- SFA
 Design Group
 STRUCTURAL ENGINEERING
 REVISION \#2
 Johnson Residence Residence Underpinning

9251 SE 46th St., Mercer Island, WA 98466

LIMITATIONS
ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY, OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS.

PROJECT NO. MFR23-021	SHEET NO.
	DATE
	$11 / 2 / 2023$
	BY
	JB

Structural Narrative

The structural calculations and drawings enclosed are in reference to the design of the foundation underpinning of the 2-story residence located in Mercer Island, WA as referenced on the coversheet. The round steel tubes and retrofit brackets are used to stabilize and/or lift settling foundations. The bottom and back portion of the bracket is securely seated against the existing concrete footing. Using the weight of the existing structure, pier sections are continuously hydraulically driven through the foundation bracket and into the soil below until a load bearing stratum is encountered. Lateral earth confinement and a driven external sleeve with a starter pier provide additional stiffness to resist eccentric loading from the foundation. Once all piers are installed, they are simultaneously loaded with individual hydraulic jacks and closely monitored as pressure is applied to achieve desired stabilization and/or lift prior to locking off the pier cap. The piers are required to resist vertical loading from the roof framing, wall framing, floor framing, concrete slab on grade, and concrete foundation. Underpinning the structure will remove lateral resistance provided by soil friction acting on the concrete foundation. By inspection, lateral resistance will be provided by soil friction acting on the unpiered portions of the concrete footing/concrete slab on grade and passive pressure acting on the buried footings perpendicular to the piered gridlines.

There is no ICC-ES report currently approved for underpinning systems within Seismic Design Category D or higher, thus the entire underpinning system has been reviewed and analyzed and is therefore a fully engineered system complying with all current codes and stamped by a licensed design professional. Deep foundation guidelines, load combinations, special inspection and testing requirements per IBC 2018 have been included. Axial and bending capacities of the external sleeve, analysis of the retrofit foundation bracket, design reductions, and corrosion considerations have been incorporated in all required calculations per AISC 360-10. Concrete foundation span capacities have been analyzed per ACI318-14. Bracket fabrication welding has been performed by Behlen Mfg Co. conforming to AWS D1.1 performed by CWB qualified welders certified to CSA Standard W47.1 in Division 2. In addition, Behlen Mfg Co. has received US99/1690 certification meeting ISO 9001:2008 requirements by ANAB accredited SGS.

General

Building Department City of Mercer Island

Building Code Conformance (Meets Or Exceeds Requirements)
2021 International Building Code (IBC)
2021 International Residential Code (IRC)
2021 Washington Building Code
2021 Washington Residential Code

Dead Loads	
Roof Dead Load	15.0 psf
Floor Dead Load	15.0 psf
Wood Wall Dead Load	12.0 psf
Interior Wall Dead Load	9.0 psf
Deck Dead Load	12.0 psf
CMU Wall Dead Load	81.0 psf
Brick Wall Dead Load	39.0 psf
Concrete	150.0 pcf

Live Loads

Roof Snow Load 25.0 psf
Deck Live Load 60.0 psf
Floor Live Load (Residential) 40.0 psf

	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Project Layout		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Project Layout (See S2.1 for Enlarged Plan)

$\text { (sfa) } \frac{\text { SFA Degign Erロup, LLC }}{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}$	PROJECT NO MFR23-021	SHEET NO.
$\begin{array}{\|l\|} \hline \text { PROJECT } \\ \text { Johnson Residence Residence Underpinning } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Design Loads		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Worst Case Vertical Design Loads (Gridline B.9)

Load Type	Design Load	Tributary Length	Line Load	
RoofdL $=$	(15 psf)	(14.00 ft)	$=210 \mathrm{plf}$	Dead Load 0.850 kips
RoofSL =	(25 psf)	(14.00 ft)	$=350 \mathrm{plf}$	Floor Live Load 1.067 kips
2ndFloordL =	(15 psf)	(13.33 ft)	$=200 \mathrm{plf}$	Roof Snow Load $\quad 0.350$ kips
2ndFloorLL $=$	(40 psf)	(13.33 ft)	= 533 plf	Controlling ASD Load Combination:
1stFloordL =	(15 psf)	(13.33 ft)	$=200 \mathrm{plf}$	D+L
1stFloorLL =	(40 psf)	$(13.33 \mathrm{ft})$	= 533 plf	
InteriorWalldl =	(9 psf)	(26.67 ft)	$=240 \mathrm{plf}$	

General Beam Analysis

LIC\# : KW-06015057, Build:20.23.08.01
SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (E) FLoor Beam GL B. 9 (For Load Generation Only)
General Beam Properties

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Loads on all spans...
Uniform Load on ALL spans: $D=0.850, L=1.067, S=0.350 \mathrm{k} / \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$

Wood Beam

LIC\# : KW-06015057, Build:20.23.08.01
SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (N) Beam GL B. 9

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2021

Analysis Method :	Allowable Stress Design	$\mathrm{Fb}+$	2400 psi	E : Modulus of Elasticity	
Load Combination	IBC 2021	Fb -	2400 psi	Ebend- xx	1800 ksi
		Fc- Pril	1550 psi	Eminbend - xx	950 ksi
Wood Species	DF/HF	Fc-Perp	650 psi	Ebend- yy	1500 ksi
Wood Grade	24F-V10	Fv	215 psi	Eminbend - yy	790 ksi
		Ft	1150 psi	Density	26.84 pcf

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans: $\mathrm{D}=0.850, \mathrm{~L}=1.067, \mathrm{~S}=0.350 \mathrm{k} / \mathrm{ft}$

DESIGN SUMMARY					$\begin{gathered} \hline \text { Design OK } \\ \hline 0.934: 1 \end{gathered}$$3.5 \times 11.25$
Maximum Bending Stress Ratio	0.834: 1	Maximum Shear Stress Ratio		=	
Section used for this span	3.5x11.25	Section used for this span			
fb : Actual	2,000.63psi		fv: Actual	=	194.84 psi
F'b	2,400.00 psi		F'v	=	208.55 psi
Load Combination	+D+L	Load Combination			+D+L
Location of maximum on span	Span \# 1	Location of maximum on span		=	6.252 ft
Span \# where maximum occurs		Span \# where maximum occurs		=	Span \# 1
Maximum Deflection					
Max Downward Transient Deflection	0.095 in Ratio $=$	$908>=360$	Span: 1 : L Only		
Max Upward Transient Deflection	0 in Ratio $=$	$0<360$	n/a		
Max Downward Total Deflection	0.170 in Ratio $=$	$505>=240$	Span: 1 : +D+L		
Max Upward Total Deflection	0. 0 in Ratio =	$0<240$			
Vertical Reactions		upport notation: Far left is \#1		Values in KIPS	
Load Combination	Support 1 Support 2				
Max Upward from all Load Conditions	6.870				
Max Upward from Load Combinations	6.870				
Max Upward from Load Cases	3.824				
D Only	3.046				
+D+L	6.870 6				
+D+S	4.300				
+D+0.750L	$5.914 \quad 5$				
+D+0.750L+0.750S	6.854				
+0.60D	1.828				
L Only	3.824				
S Only					

$\begin{array}{l\|l} \text { Cfa } & \text { SFA DeGign Erロup, LLC } \\ \end{array}$					PROJECT NO MFR23-021	SHEET NO.
PROJECTJohnson Residence Residence Underpinning						$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads						$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$
Worst Case Vertical Design Loads (Gridline 2)						
Load Type	Design Load	Tributary Length	Line Load			
RoofdL =	(15 psf)	(4.00 ft)	$=60 \mathrm{plf}$	Dead Load		0.496 kips
RoofSL =	(25 psf)	(4.00 ft)	$=100 \mathrm{plf}$	Floor Live Load		0.726 kips
2ndFloordL =	(15 psf)	(9.08 ft)	$=136 \mathrm{plf}$	Roof Snow Load		0.100 kips
2ndFloorll $=$	(40 psf)	(9.08ft)	$=363 \mathrm{plf}$	Controlling ASD	Load Comb	tion:
1stFloordL =	(15 psf)	(9.08ft)	$=136 \mathrm{plf}$	D+L		
1stFloorLL =	(40 psf)	(9.08 ft)	= 363 plf			
InteriorWalld $=$	(9 psf)	(18.17 ft)	$=164$ plf			
Max Vertical Load to Worst Case Pier						1.222 kips

General Beam Analysis

LIC\# : KW-06015057, Build:20.23.08.01
SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (E) FLoor Beam GL 2 (For Load Generation Only)
General Beam Properties

Load(s) for Span Number 1
Point Load: D $=5.844, \mathrm{~L}=7.336, \mathrm{~S}=2.406 \mathrm{k} @ 13.666 \mathrm{ft}$

$\text { (sfa) } \frac{\text { SFA Design Eraup, LLC }}{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}$					SHEET NO.
PROJECT Johnson Residence Residence Underpinning					$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads					$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$
Worst Case Vertical Design Loads (Gridline 3)					
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	(4.00 ft)	= 60 plf	Dead Load	0.252 kips
RoofSL =	(25 psf)	(4.00 ft)	$=100 \mathrm{plf}$	Floor Live Load	0.320 kips
2ndFloordL =	(15 psf)	(4.00 ft)	$=60 \mathrm{plf}$	Roof Snow Load	0.100 kips
2ndFloortL =	(40 psf)	(4.00 ft)	$=160 \mathrm{plf}$	Controlling ASD	tion:
1stFloordl =	(15 psf)	(4.00 ft)	= 60 plf	D+L	
1stFloorLL $=$	(40 psf)	(4.00 ft)	$=160 \mathrm{plf}$		
InteriorWalldi =	(9 psf)	(8.00 ft)	$=72 \mathrm{plf}$		
Max Vertical Load to Worst Case Pier					0.572 kips

General Beam Analysis

LIC\# : KW-06015057, Build:20.23.08.01
SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (E) FLoor Beam GL 3 (For Load Generation Only)
General Beam Properties

$\frac{\text { SFA Design EraLp, LLC }}{\text { sfa }} \frac{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}{}$	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Worst Case Vertical Design Loads (Gridline B W/ Tieback)

$\text { (sfa) } \frac{\text { SFA Design EraLp, LLC }}{\text { sTRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}$	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Worst Case Vertical Design Loads (Gridline B W/O Tieback)

Tributary Width To Pier = Load Type	$=4.00 \mathrm{ft}$				
	Design Load	Tributary Length	Line Load		
Roofdl =	(15 psf)	(10.00 ft)	$=150$ plf	Dead Load	6.541 kips
RoofSL =	(25 psf)	$(10.00 \mathrm{ft})$	$=250$ plf	Floor Live Load	2.880 kips
2ndFloordl =	(15 psf)	(7.00 ft)	$=105$ plf	Roof Snow Load	1.000 kips
2ndFloorll =	(40 psf)	(7.00 ft)	$=280$ plf	Controlling ASD	tion:
1stFloordl =	(15 psf)	$(7.00 \mathrm{ft})$	$=105$ plf	D+0.75L+0.75S	
1stFloorll =	(40 psf)	(7.00 ft)	$=280$ plf		
ConcFloordl =	(150 pcf)	(4.00 in) (48.00 in)	$=200$ plf		
ConcFloorll $=$	(40 psf)	(4.00 ft)	$=160$ plf		
InteriorWallds =	(9 psf)	$(14.00 \mathrm{ft})$	$=126$ plf		
ExteriorWalld =	(12 psf)	$(18.00 \mathrm{ft})$	$=216$ plf		
Stemwalld =	(150 pcf)	(8.00 in) (72.00 in)	$=600$ plf		
FootingDL $=$	(150 pcf)	(8.00 in) (16.00 in)	$=133$ plf		
		Max Vertical Load to Worst Ca	se Pier		9.451 kips
		Max Unsupported Ftg Span	m Arching		13.33 ft

$\begin{array}{l\|l\|} \text { Cfa } & \text { SFA Design Eraup, LLC } \\ \cline { 2 - 3 } & \frac{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}{} \end{array}$	$\begin{array}{\|l\|} \hline \text { PROJECT NO. } \\ \text { MFR23-021 } \end{array}$	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Worst Case Vertical Design Loads (Gridline E W/ PL)

$\begin{array}{l\|l\|} \text { (Sfa } & \text { SFA Design ErロLp, LLC } \\ \text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS } \end{array}$	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Worst Case Vertical Design Loads (Gridline E W/O PL)

Tributary Width To Pier =			$=4.17 \mathrm{ft}$	Dead Load	8.792 kips
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	$(19.50 \mathrm{ft})$	= 293 plf		
RoofSL =	(25 psf)	(19.50 ft)	$=488 \mathrm{plf}$	Floor Live Load	4.667 kips
2ndFloordL =	(15 psf)	(12.00 ft)	$=180 \mathrm{plf}$	Roof Snow Load	2.031 kips
2ndFloorll =	(40 psf)	(12.00 ft)	$=480 \mathrm{plf}$	Controlling ASD	tion:
1stFloordt =	(15 psf)	(12.00 ft)	$=180 \mathrm{plf}$	D+0.75L+0.75S	
1stFloorlL $=$	(40 psf)	$(12.00 \mathrm{ft})$	$=480 \mathrm{plf}$		
ConcFloordl $=$	(150 pcf)	$(4.00 \mathrm{in}) \quad(48.00 \mathrm{in})$	$=200 \mathrm{plf}$		
ConcFloorll $=$	(40 psf)	(4.00 ft)	$=160 \mathrm{plf}$		
InteriorWalld =	(9 psf)	$(24.00 \mathrm{ft})$	$=216 \mathrm{plf}$		
ExteriorWalld =	(12 psf)	(9.00 ft)	$=108 \mathrm{plf}$		
Stemwalld =	(150 pcf)	(8.00 in) (96.00 in)	= 800 plf		
FootingdL $=$	(150 pcf)	(8.00 in) (16.00 in)	$=133 \mathrm{plf}$		
		Max Vertical Load to Worst Case Pier			13.816 kips
		Max Unsupported Ftg Span from Arching Action			17.33 ft

$\text { (sfa) } \frac{\text { SFA Degign Grロup, LLC }}{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}$	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Design Loads		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Worst Case Vertical Design Loads (Gridline F)

	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Worst Case Vertical Design Loads (Gridline 1)

Tributary Width To Pier =			$=5.00 \mathrm{ft}$		
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	(4.00 ft)	= 60 plf	Dead Load	7.837 kips
RoofSL =	(25 psf)	(4.00 ft)	$=100 \mathrm{plf}$	Floor Live Load	4.083 kips
2ndFloordL =	(15 psf)	(7.08 ft)	$=106 \mathrm{plf}$	Roof Snow Load	0.500 kips
2ndFloorll $=$	(40 psf)	(7.08ft)	$=283 \mathrm{plf}$	Controlling ASD	tion:
1stFloordL =	(15 psf)	(7.08ft)	= 106 plf	D+L	
1stFloortL $=$	(40 psf)	(7.08ft)	$=283$ plf		
Deckdl =	(12 psf)	(1.50 ft)	$=18 \mathrm{plf}$		
Deckll =	(60 psf)	(1.50 ft)	$=90 \mathrm{plf}$		
ConcFloordl $=$	(150 pcf)	(4.00 in) (48.00 in)	$=200 \mathrm{plf}$		
ConcFloorlı $=$	(40 psf)	(4.00 ft)	$=160 \mathrm{plf}$		
InteriorWalldl =	(9 psf)	(14.17 ft)	$=128 \mathrm{plf}$		
ExteriorWalld =	(12 psf)	(18.00 ft)	= 216 plf		
Stemwalld =	(150 pcf)	(8.00 in) (72.00 in)	= 600 plf		
FootingDL $=$	(150 pcf)	(8.00 in) (16.00 in)	$=133$ plf		
		Max Vertical Load to Worst C	ase Pier		11.920 kips
		Max Unsupported Ftg Span	m Arching		13.33 ft

	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Worst Case Vertical Design Loads (Gridline 5)

Tributary Width To Pier =			$=8.42 \mathrm{ft}$		
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	(4.00 ft)	= 60 plf	Dead Load	11.290 kips
RoofSL =	(25 psf)	(4.00 ft)	$=100 \mathrm{plf}$	Floor Live Load	2.693 kips
2ndFloordL =	(15 psf)	(2.00 ft)	$=30 \mathrm{plf}$	Roof Snow Load	0.842 kips
2ndFloorll $=$	(40 psf)	(2.00 ft)	= 80 plf	Controlling ASD	ation:
1stFloordL =	(15 psf)	(2.00 ft)	$=30 \mathrm{plf}$	D+L	
1stFloortL $=$	(40 psf)	(2.00 ft)	= 80 plf		
ConcFloordl =	(150 pcf)	(4.00 in) (48.00 in)	= 200 plf		
ConcFloorll $=$	(40 psf)	(4.00 ft)	$=160 \mathrm{plf}$		
InteriorWalldl =	(9 psf)	(8.00 ft)	$=72 \mathrm{plf}$		
ExteriorWalld =	(12 psf)	(18.00 ft)	$=216 \mathrm{plf}$		
Stemwalldi =	(150 pcf)	(8.00 in) (72.00 in)	$=600 \mathrm{plf}$		
FootingdL $=$	(150 pcf)	(8.00 in) (16.00 in)	= 133 plf		
		Max Vertical Load to Worst C	se Pier		13.983 kips
		Max Unsupported Ftg Span	m Arching		13.33 ft

$\frac{\text { Sfa }}{} \frac{\text { SFA }}{\text { sTRUCTU }}$		$\frac{1 D_{1}, \text { LLC }}{\text { CIAL INSPECTIONS }}$			SHEET NO.
$\begin{array}{\|l\|} \hline \text { PROJECT } \\ \text { Johnson Residenc } \end{array}$	nce Underpin				$\begin{array}{\|l\|} \hline \text { DATE } \\ \text { 11/2/2023 } \\ \hline \end{array}$
SUBJECT Design Loads					$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$
Worst Case Vertical Design Loads (Gridline (E) Wood Beam GL 5)					
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	(11.00 ft)	$=165 \mathrm{plf}$	Dead Load	0.483 kips
RoofSL =	(25 psf)	(11.00 ft)	= 275 plf	Floor Live Load	0.350 kips
2ndFloordL =	(15 psf)	(8.75 ft)	$=131 \mathrm{plf}$	Roof Snow Load	0.275 kips
2ndFloorll $=$	(40 psf)	(8.75 ft)	$=350 \mathrm{plf}$	Controlling ASD Load Combination:$\mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$	
InteriorWalldl =	(9 psf)	(8.75 ft)	$=79 \mathrm{plf}$		
ExteriorWalldl =	(12 psf)	(9.00 ft)	$=108 \mathrm{plf}$		
Max Vertical Load to Worst Case Pier				0.952 kips	

General Beam Analysis

LIC\# : KW-06015057, Build:20.23.08.01

SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (E) Wood Bema GL 5 (For Load Generation Only)
General Beam Properties

Applied Loads \quad Service loads entered. Load Factors will be applied for calculations.
Loads on all spans...
\quad Uniform Load on ALL spans : $D=0.2730, L=0.1750, S=0.10 \mathrm{k} / \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$

Load(s) for Span Number 2
Point Load: D $=0.750, \mathrm{~L}=0.230, \mathrm{~S}=0.5030 \mathrm{k} @ 0.0 \mathrm{ft}$

(
PROJECT
Johnson
PROJECT
Johnson Residence Residence Underpinning
\qquad
2.875 in \varnothing Push Pier System

	PROJECT NO. MFR23-021.	SHEET NO.
		DATE $11 / 2 / 2023$
	BY	
	JB	

[^0]| PROJECT | DATE |
| :--- | :--- |
| Johnson Residence Residence Underpinning | $11 / 2 / 2023$ |
| SUBJECT | BY |
| 2.875 in \varnothing Push Pier System | JB |

> Max Load To Pier = Design Load $=13983 \mathrm{lb}$
> 2.875" Diameter Pipe Pier with $0.165^{\prime \prime}$ Thick Wall 3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall
> Minimum 6'-0" Installation Depth And Minimum 3000 psi Installation Pressure
> Minimum $1 / 4$ " Foundation Lift During Installation

$\begin{array}{l\|l\|} \text { (Sfa } & \text { SFA Design ErロLp, LLC } \\ \text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS } \end{array}$	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Design Loads		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Worst Case Vertical Design Loads (Gridline GL 5 \& C)

Tributary Width To Pier = Load Type		Tributary Length		$=6.00 \mathrm{ft}$Line Load		11.785 kips
	Design Load					
RoofdL $=$	(15 psf)	$(4.00 \mathrm{ft})$		$=60 \mathrm{plf}$	Dead Load	
RoofSL =	(25 psf)	$(4.00 \mathrm{ft})$		$=100 \mathrm{plf}$	Floor Live Load	6.611 kips
2ndFloordL =	(15 psf)	(2.00 ft)		= 30 plf	Roof Snow Load	2.977 kips
2ndFloorll =	(40 psf)	$(2.00 \mathrm{ft})$		$=80 \mathrm{plf}$	Controlling ASD	tion:
1stFloordt =	(15 psf)	(2.00 ft)		$=30 \mathrm{plf}$	D+0.75L+0.75S	
1stFloorll $=$	(40 psf)	(2.00 ft)		= 80 plf		
ConcFloordl $=$	(150 pcf)	(4.00 in)	(48.00 in)	$=200 \mathrm{plf}$		
ConcFloorll $=$	(40 psf)	(4.00 ft)		$=160 \mathrm{plf}$		
InteriorWalld =	(9 psf)	(6.00 ft)		= 54 plf		
ExteriorWalld =	(12 psf)	(18.00 ft)		$=216 \mathrm{plf}$		
Stemwalldi =	(150 pcf)	(8.00 in)	(72.00 in)	$=600 \mathrm{plf}$		
FootingdL =	(150 pcf)	(8.00 in)	(16.00 in)	$=133 \mathrm{plf}$		
Enerclac Point LoaddL =				$=3845 \mathrm{lb}$		
Enercalc Point LoadıL $=$				$=4691 \mathrm{lb}$		
Enercalc Point LoadsL =				$=2377 \mathrm{lb}$		

Max Vertical Load to Worst Case Pier	18.976 kips
Max Unsupported Ftg Span from Arching Action	13.33 ft

PROJECT
Johnson
-

PROJECT Residence Residence Underpinning	DATE
Johnson	$11 / 2 / 2023$
SUBJECT	BY
2.875 in \varnothing Push Pier System	JB

Max Load To Pier $=$ Design Load $=9488 \mathrm{lb}$
2.875" Diameter Pipe Pier with 0.165" Thick Wall
3.5 "Diameterx 36 " Long Pipe Sleeve With 0.216 "ThickWall

Minimum 6'-0" Installation Depth And Minimum 2000 psi Installation Pressure
Minimum ¼" Foundation Lift During Installation

Max Vertical Load to Worst Case Pier	22.840 kips
Max Unsupported Ftg Span from Arching Action	12.00 ft

$\begin{array}{l\|l\|l\|} \text { Cfa } & \text { SFA Degigin GraLp, LLC } \\ \cline { 2 - 3 } & \frac{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }}{} \end{array}$	$\begin{aligned} & \hline \text { PROJECT NO. } \\ & \text { MFR23-021 } \end{aligned}$	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT 2.375 " in \varnothing Pin Pile System		$\begin{array}{\|l\|l\|} \hline B Y \\ J B \end{array}$

Max Load To Pier $=$ Design Load $=8181 \mathrm{lb}$
2.875" Diameter Pipe Pier with 0.165 " Thick Wall
3.5" Diameterx48" Long Pipe Sleeve With 0.216" Thick Wall

Minimum 6'-0" Installation Depth And Minimum 2600 psi Installation Pressure Minimum $1 / 4$ " Foundation Lift During Installation

$\begin{array}{l\|l\|l\|} \text { Sfa } & \frac{\text { SFA Desigin ErDLD, LLC }}{\text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS }} \end{array}$	PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT 2.375" in \varnothing Pin Pile System		$\begin{array}{\|l\|l} \hline \mathrm{BY} \\ \mathrm{JB} \\ \hline \end{array}$

Max Load To Pier $=$ Design Load $=5710$ lb
2.875" Diameter Pipe Pier with 0.165 " Thick Wall
3.5" Diameterx48" Long Pipe Sleeve With 0.216" Thick Wall

Minimum 6'-0" Installation Depth And Minimum 1800 psi Installation Pressure Minimum $1 / 4$ " Foundation Lift During Installation

$\begin{array}{l\|l\|l\|} \text { Sfa } & \text { SFA Design Graup, LLC } \\ \text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS } \end{array}$						PROJECT NO MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning							DATE $11 / 2 / 2023$
$\begin{array}{\|l\|} \hline \text { SUBJECT } \\ \text { Design Loads } \\ \hline \end{array}$							$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$
Worst Case Vertical Design Loads (Gridline GL 2 \& B.9)							
Tributary Width To Pier $=$ Load TypeConc. FootingdL $=$ $(150 \mathrm{pcf})$$\quad(36.00 \mathrm{in}) \quad(12.00 \mathrm{in})$				$\begin{aligned} & =4.00 \mathrm{ft} \\ & \text { Line Load } \end{aligned}$			
				$=1350 \mathrm{lb}$	Dead Load		16.273 kips
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	$=200 \mathrm{plf}$	Floor Live Load		20.135 kips
ConcFloorll $=$	(40 psf)	(4.00 ft)		$=160$ plf	Roof Snow Load		4.078 kips
Enerclac Point LoaddL $=$				$=14123 \mathrm{lb}$	Controlling ASD	Load Comb	tion:
Enercalc Point Loadll =				$=19495 \mathrm{lb}$	D+L		
Enercalc Point Loadsl $=$				$=4078 \mathrm{lb}$			

Max Vertical Load to Worst Case Pier	$\mathbf{3 6 . 4 0 8}$ kips
Max Unsupported Ftg Span from Arching Action	12.00 ft

PROJECT
Johnson
Residence Residence Underpinning
SUBJECT
2.875 in \varnothing Push Pier System

PROJECT NO. MFR23-021	SHEET NO.
	DATE
	$11 / 2 / 2023$
	BY
	JB

Max Load To Pier $=$ Design Load $=9102 \mathrm{lb}$
2.875" Diameter Pipe Pier with 0.165" Thick Wall
3.5 "Diameterx 36 " Long Pipe Sleeve With 0.216 "ThickWall

Minimum 10'-0" Installation Depth And Minimum 2000 psi Installation Pressure Minimum $1 / 4$ " Foundation Lift During Installation

STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS

PROJECT	DATE
Johnson Residence Residence Underpinning	$11 / 2 / 2023$
SUBJECT	BY
Design Loads	JB

Worst Case Vertical Design Loads (Gridline E)

Tributary Width To Pier =			$=1.00 \mathrm{ft}$		
Load Type	Design Load	Tributary Length	Line Load		
RoofdL =	(15 psf)	(7.00 ft)	$=105$ plf	Dead Load	0.261 kips
RoofSL =	(25 psf)	(7.00 ft)	$=175$ plf	Floor Live Load	0.080 kips
2ndFloordL =	(15 psf)	(2.00 ft)	$=30 \mathrm{plf}$	Roof Snow Load	0.175 kips
2ndFloorll =	(40 psf)	(2.00 ft)	$=80 \mathrm{plf}$	Controlling ASD	ation:
InteriorWalldi =	(9 psf)	(2.00 ft)	$=18 \mathrm{plf}$	D+0.75L+0.75S	
ExteriorWalld =	(12 psf)	(9.00 ft)	$=108 \mathrm{plf}$		

Max Vertical Load to Worst Case Pier	$\mathbf{0 . 4 5 2} \mathbf{~ k i p s}$
Max Unsupported Ftg Span from Arching Action	12.00 ft

General Beam Analysis

LIC\# : KW-06015057, Build:20.23.08.01

SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: (E) Wood Bema GL E (For Load Generation Only)
General Beam Properties

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Loads on all spans...
Uniform Load on ALL spans : $D=0.2610, L=0.080, S=0.1750 \mathrm{k} / \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$

$\mathrm{Fy}_{\mathrm{h}}=$	50 ksi		
$\mathrm{Fb} \mathrm{h}_{\mathrm{h}}=0.75^{*} \mathrm{~F} \mathrm{y}_{\mathrm{h}}=$	37.500 ksi		
D1 =	10 in	$\mathrm{A} 1=\mathrm{p} * \mathrm{D}^{2} / 4=$	$78.5 \mathrm{in}^{2}$
t1 =	0.375 in	$\mathrm{S} 1=1^{*} \mathrm{t}^{2} / 6=$	$0.023 \mathrm{in}^{3}$
$\mathrm{Q} 1=\mathrm{A} 1^{*} \mathrm{~W} 1=$	10.7 kips	$\mathrm{w} 1=$	0.136 ksi
D2 $=$	12 in	$\mathrm{A} 2=\mathrm{p} * \mathrm{D}^{2} / 4-\mathrm{p} *(\text { Tube OD })^{2} / 4=$	$106.9 \mathrm{in}^{2}$
$\mathrm{t} 2=$	0.375 in	$\mathrm{S} 2=1^{*} \mathrm{t}^{2} / 6=$	$0.023 \mathrm{in}^{3}$
Q2 $=\mathrm{A} 2^{*} \mathrm{~W} 2=$	8.9 kips	w2 =	0.083 ksi
D3 $=$	0 in	$\mathrm{A} 3=\mathrm{p} * 3^{2} / 4-\mathrm{p} *(\text { Tube OD })^{2} / 4=$	$0.0 \mathrm{in}^{2}$
t3 $=$	0.000 in	$S_{3}=1^{*} 3^{2} / 6=$	$0.000 \mathrm{in}^{3}$
$\mathrm{Q} 3=\mathrm{A} 3^{*} \mathrm{~W} 3=$	0.0 kips	w3 =	0.000 ksi

Max Load To Pier $=$ Design Load $=8329 \mathrm{lb}$
3.5 in Diameter External Sleeve with 0.216 in Thick Wall
2.875 in Diameter Pier with 0.276 in Thick Wall
0.375 " Thick 10/12" Helix With 0.25" Fillet Welds Each Side of Helix to Pier Minimum 6'-0" Installation Depth And Minimum 1900 Ib-ft Installation Torque

$\text { Sfa } \frac{\text { SFA Design Group, LLc }}{\text { STRUCTURAL \| CIVIL \| LAND USE PLANNING }}$	$\begin{array}{\|l} \hline \text { PROJECT NO. } \\ \text { MFR23-021 } \end{array}$	SHEET NO.
PRROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT SafeBase-LD (Light Duty)		$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Capacity of 3/4" \varnothing GRB7 (125ksi) Threaded Rod

ASCE 7-16 Chapters 11 \& 13
Soil Site Class = D (Default) Tab. 20.3-1, (Default $=$ D)
Response Spectral Acc. $(0.2 \mathrm{sec}) \mathrm{S}_{\mathrm{s}}=142.70 \% \mathrm{~g} \quad=1.427 \mathrm{~g}$ Figs. 22-1, 22-3, 22-5, 22-6
Response Spectral Acc. $(1.0 \mathrm{sec}) \mathrm{S}_{1}=49.50 \% \mathrm{~g} \quad=0.495 \mathrm{~g}$ Figs. 22-2, 22-4, 22-5, 22-6
Site Coefficient $\mathrm{F}_{\mathrm{a}} \quad=1.200$ Tab. 11.4-1
Site Coefficient $F_{v} \quad=1.806$ Tab. 11.4-2
Max Considered Earthquake Acc. $\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{s}} \quad=1.712 \mathrm{~g}$ (11.4-1)
Max Considered Earthquake Acc. $\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \cdot \mathrm{S}_{1}$
$=0.894 \mathrm{~g}$
(11.4-2)
@ 5% Damped Design $S_{D S}=2 / 3\left(S_{\text {MS }}\right)$
$S_{D 1}=2 / 3\left(S_{M 1}\right)$
$=1.142 \mathrm{~g}$
$=0.596 \mathrm{~g}$
(11.4-3)
(11.4-4)

Risk Category $=$ II, Standard
Flexible Diaphragm §12.3.1
Seismic Design Category for $0.1 \mathrm{sec} \quad \mathrm{D}$
Seismic Design Category for $1.0 \mathrm{sec} \quad \mathrm{D}$ S1 < $0.75 \mathrm{~g} \quad$ N/A

Tab. 11.6-1
Tab. 11.6-2
§11.6
Exception of $\S 11.6$ does not apply
§12.8 Equivalent Lateral Force Procedure A. BEARING WALL SYSTEMS Tab. 12.2-1
Seismic Force Resisting System (E-W) 15. Light-framed (wood) walls sheathed with wood structural panels rated for shear resistance or steel sheets
A. BEARING WALL SYSTEMS Tab. 12.2-1

Seismic Force Resisting System (N-S) 15. Light-framed (wood) walls sheathed with wood structural panels rated for shear resistance or steel sheets

C_{t}	$=0.02$	$\mathrm{x}=0.75$	Tab. 12.8-2
Structural height h_{n}	$=24.0 \mathrm{ft}$	Structural Height Limit $=65.0 \mathrm{ft}$	Tab. 12.2-1
C_{u}	$=1.400$	for $\mathrm{S}_{\mathrm{D} 1}$ of 0.596 g	Tab. 12.8-1
Approx Fundamental period, T_{a}	$=\mathrm{C}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{n}}\right)^{\mathrm{x}}$	$=0.217$	$(12.8-7)$

Figs. 22-14 through 22-17
Calculated T shall not exceed $\leq \mathrm{C}_{\mathrm{u}} \mathrm{T}_{\mathrm{a}} \quad=0.304$
Use $T=0.22 \mathbf{~ s e c}$
$0.8 \mathrm{~T}_{\mathrm{S}}=0.8\left(\mathrm{~S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{DS})}=0.418\right.$ Exception of $\S 11.6$ does not apply

Is structure Regular $\& \leq \mathbf{5}$ stories ? Yes

Response Modification Coefficient $\mathrm{R}=$	E-W	
	6.5	
Over Strength Factor $\Omega_{0}=$	2.5	
Importance factor $\mathrm{I}_{\mathrm{e}}=$	1.00	
Seismic Base Shear V =	C_{s} W	
$\mathrm{C}_{\mathrm{s}}=$	$\underline{S_{0}}$	$=0.176$
	R / l e	
or need not to exceed, $\mathrm{C}_{\text {s }}=$	$\frac{S_{D_{1}}}{\left(\mathrm{R} / I_{\mathrm{e}}\right) T}$	$=0.423$
or $\mathrm{C}_{\mathrm{s}}=$	$\underline{S_{D 1} T_{1}}$	N/A
	$\mathrm{T}^{2}\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)$	
Min $\mathrm{C}_{\mathrm{s}}=$	$0.5 \mathrm{~S}_{1} 1 \mathrm{l}^{\prime} / \mathrm{R}$	N/A
Use $\mathrm{C}_{\mathrm{s}}=$	0.176	
Design base shear V =	0.17	

§12.8.1.3

	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Wind Design Criteria		$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Wind Analysis for Low-rise Building, Based on ASCE 7-16

INPUT DATA
Exposure category (26.7.3)
Basic wind speed (26.5.1)

		B
V	$=$	98
$\mathrm{~K}_{\mathrm{zt}}$	$=1.00$	Flat
h_{e}	$=18 \mathrm{ft}$	
h_{r}	$=24 \mathrm{ft}$	
L	$=51 \mathrm{ft}$	
B	$=39 \mathrm{ft}$	
E	$=332 \mathrm{ft}$	

Velocity pressure

qh $=0.00256$ Kh Kzt Kd Ke V^2 $=14.63 \mathrm{psf}$
where: \quad qh $=$ velocity pressure at mean roof height, h. (Eq. 26.10-1 \& Eq. 30.3-1)
$\mathrm{Kh}=$ velocity pressure exposure coefficient evaluated at height, $\mathrm{h},($ Tab. 26.10-1) $\mathbf{0} \mathbf{0 . 7 0 0}$
$\mathrm{Kd}=$ wind directionality factor. (Tab. 26.6-1, for building)
$\mathrm{K}_{\mathrm{e}}=$ ground elevation factor. (Tab. 26.9-1)
$=1.00$
$\mathrm{h}=$ mean roof height
$=21.00 \mathrm{ft}$
< 60 ft , Satisfactory
(ASCE 7-10 26.2.1)
Design pressures for MWFRS

$\mathbf{p}=\mathbf{q}_{\mathbf{h}}\left[\left(\mathbf{G} \mathbf{C}_{\mathbf{p f}}\right)-\left(\mathbf{G} \mathbf{C}_{\mathbf{p i}}\right)\right]$	$\mathrm{p}_{\min }=$	$\mathbf{1 6}$	psf for wall area (28.3.4)
where:	$\mathrm{p}=$ pressure in appropriate zone. (Eq. 28.3-1).	$\mathrm{p}_{\text {min }}=$	$\mathbf{8}$

G Cp f = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1)
G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building)
$=0.18 \quad$ or $\quad \mathbf{- 0 . 1 8}$
$\mathrm{a}=$ width of edge strips, Fig 28.3-1, note 9, $\operatorname{MAX}[\operatorname{MIN}(0.1 \mathrm{~B}, 0.1 \mathrm{~L}, 0.4 \mathrm{~h}), \operatorname{MIN}(0.04 \mathrm{~B}, 0.04 \mathrm{~L}), 3]=$
Net Pressures (psf), Load Case A

Surface	Roof angle $\theta=17.10$		
	$\mathrm{G} \mathrm{C}_{\mathrm{pf}}$	Net Pressure with	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1	0.50	10.02	4.75
2	-0.69	-7.46	-12.73
3	-0.46	-4.08	-9.34
4	-0.40	-3.26	-8.53
1 E	0.76	13.80	8.53
2 E	-1.07	-13.02	-18.29
3 E	-0.68	-7.29	-12.56
4 E	-0.60	-6.14	-11.40

Surface	Roof angle $\theta=17.10$		
	$\mathrm{G} \mathrm{C}_{\mathrm{pf}}$	Net Pressure with	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1	-0.45	-3.95	-9.22
2	-0.69	-7.46	-12.73
3	-0.37	-2.78	-8.05
4	-0.45	-3.95	-9.22
5	0.40	8.48	3.22
6	-0.29	-1.61	-6.88
1 E	-0.48	-4.39	-9.66
2 E	-1.07	-13.02	-18.29
3 E	-0.53	-5.12	-10.39
4 E	-0.48	-4.39	-9.66
5 E	0.61	11.56	6.29
6 E	-0.43	-3.66	-8.92

Load Case A (Transverse) Load Case B (Longitudinal)

	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \end{array}$
SUBJECT Existing Lateral Resistance Along Gridline A \& B		$\begin{array}{\|l\|} \hline \mathrm{BY} \\ \mathrm{JB} \end{array}$

Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.
Passive Pressure From Perpendicular Return Walls (Along Gridline A \& B)

> Effective Friction Angle $=29^{\circ}$
> Passive Coefficient, $K_{p}=\tan ^{\wedge} 2^{\star}\left(45+\phi^{\prime} / 2\right)$

$$
K_{p}=2.88
$$

Soil Unit Weight, $\gamma=110 \mathrm{pcf}$
Passive Pressure, $\mathrm{Pp}=\mathrm{K}_{\mathrm{p}}{ }^{*} \mathrm{Y}=317 \mathrm{pcf}$
Ext Buried Soil Depth, $\mathrm{d}_{\mathrm{e}}=\mathrm{d}-12$ "-dexp $=1.7 \mathrm{ft}$
Int Buried Soil Depth, $\mathrm{d}_{\mathrm{i}}=\mathrm{df}-12 \mathrm{I}=0.0 \mathrm{ft}$

$$
\begin{aligned}
\mathrm{A}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{e}}\right) & =264 \mathrm{psf} \\
\mathrm{~B}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{i}}\right) & =0 \mathrm{psf} \\
\mathrm{w}_{\mathrm{ext}}=\mathrm{A}^{*} \mathrm{~d}_{\mathrm{e}} / 2 & =440 \mathrm{plf} \\
\mathrm{w}_{\text {int }}=\mathrm{B}^{*} \mathrm{~d}_{\mathrm{i}} / 2 & =0 \mathrm{plf}
\end{aligned}
$$

Footing/Foundation Wall Loading

Note: Section about is a general representation of a concrete footing. Refer to plans for specific details

Exterior Length Due to Moment, $L_{\text {ext }}=\sqrt{ }\left(8^{*} \phi^{*} f_{r}{ }^{*} I_{\text {gext }} /\left(y_{t}{ }^{*} W_{\text {ext }}\right) / 2=5.00 \mathrm{ft}\right.$ Interior Length Due to Moment, $\mathrm{L}_{\text {int }}=\sqrt{ }\left(8^{*} \phi^{*} \mathrm{f}_{\mathrm{r}}{ }^{*} \mathrm{~g}_{\text {gint }} /\left(\mathrm{y}_{\mathrm{t}}{ }^{*} \mathrm{w}_{\text {ext }}\right) / 2=0.00 \mathrm{ft}\right.$ Exterior Length Due to Shear, $L_{\text {ext }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\text {ext }}=5.00 \mathrm{ft}$
Interior Length Due to Shear, $\mathrm{L}_{\text {int }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\text {int }}=0.00 \mathrm{ft}$
$R p_{\text {ext }}=w_{\text {ext }}{ }^{*} L_{\text {ext }}=2202 \mathrm{lbs}$
$R p_{\text {int }}=w_{\text {int }}{ }^{*} L_{\text {int }}=0 \mathrm{lbs}$
Lateral Capacity, $R p=R p_{\text {ext }}+R p_{\text {int }}=2202 \mathrm{lbs}$
Slab on Grade Frictional Resistance

$$
\begin{aligned}
\text { Slab Along This Line } & =\text { Yes } \\
\text { Coeficient of Soil Friction } & =0.30 \\
\text { Length of Resisting Line } & =51 \mathrm{ft} \\
\text { Tributary Width of Slab } & =5 \mathrm{ft} \\
\text { Slab Thickness } & =4 \mathrm{in} \\
\text { Concrete Weight } & =150.0 \mathrm{pcf} \\
\text { Soil Friction VRESISt } & =3825 \mathrm{lbs}
\end{aligned}
$$

Footing Frictional Resistance Along Gridline A \& B

Unpiered Portion of Gridline A \& B = No
Soil Friction VRESISt $=0 \mathrm{lbs}$

	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Lateral Design Loads Along Gridline A \& B		$\begin{aligned} & \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Soil Load to Foundation, Vsf =	(40 pcf)	(6.00 ft)	(4.00 ft)	$=1920 \mathrm{lb}$
Soil Load to Floor Above, Vsa =	(40 pcf)	(6.00 ft)	(14.00 ft)	$=1680 \mathrm{lb}$

Wind Base Shear Along Gridline A \& B

Seismic Base Shear Along Gridline A \& B

$\begin{array}{l\|l\|l\|l\|} \text { Cfa } & \text { SFA Degign Grロup, LLC } \\ \cline { 2 - 3 } & \text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS } \end{array}$	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Existing Lateral Resistance Along Gridline E		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.
Passive Pressure From Perpendicular Return Walls (Along Gridline E)

$$
\text { Effective Friction Angle }=29^{\circ}
$$

Passive Coefficient, $K_{p}=\tan ^{\wedge} 2^{*}\left(45+\varnothing^{\prime} / 2\right)$
$K_{p}=2.88$
Soil Unit Weight, $\gamma=110 \mathrm{pcf}$
Passive Pressure, $\mathrm{Pp}=\mathrm{K}_{\mathrm{p}}{ }^{*} \mathrm{Y}=317 \mathrm{pcf}$
Ext Buried Soil Depth, $\mathrm{d}_{\mathrm{e}}=\mathrm{d}-12$ "-dexp $=0.5 \mathrm{ft}$
Int Buried Soil Depth, $\mathrm{d}_{\mathrm{i}}=\mathrm{df}-12^{\prime \prime}=0.0 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{e}}\right)=79 \mathrm{psf} \\
& \mathrm{~B}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{i}}\right)=0 \mathrm{psf} \\
& \mathrm{w}_{\text {ext }}=\mathrm{A}^{*} \mathrm{~d}_{\mathrm{e}} / 2=40 \mathrm{plf} \\
& \mathrm{w}_{\text {int }}=\mathrm{B}^{*} \mathrm{~d}_{\mathrm{i}} / 2=0 \mathrm{plf}
\end{aligned}
$$

Footing/Foundation Wall Loading

Slab on Grade Frictional Resistance

$$
\begin{aligned}
\text { Slab Along This Line } & =\text { Yes } \\
\text { Coeficient of Soil Friction } & =0.30 \\
\text { Length of Resisting Line } & =45 \mathrm{ft} \\
\text { Tributary Width of Slab } & =5 \mathrm{ft} \\
\text { Slab Thickness } & =4 \mathrm{in} \\
\text { Concrete Weight } & =150.0 \mathrm{pcf} \\
\text { Soil Friction VRESIST } & =3375 \mathrm{lbs}
\end{aligned}
$$

Footing Frictional Resistance Along Gridline E
Unpiered Portion of Gridline E = Yes
Coeficient of Soil Friction $=0.30$
Length of Resisting Line $=19 \mathrm{ft}$
Dead Load Above $=2110$ plf
Soil Friction Vresist $=12026$ lbs

Worst Case Lateral Load Along Gridline E = 15070 lbs
Total Available Lateral Resistance Along Gridline E = 14181 lbs
Additional Lateral Resistance of 889 lbs Required

Table 10.7.2.4-1—Pile P-Multipliers, P_{m}, for Multiple Row Shading (averaged from Hannigan et al., 2006)

Pile $C T C$ spacing (in the direction of loading)	P-Multipliers, P_{m}		
	Row 1	Row 2	Row 3 and higher
$3 B$	0.8	0.4	0.3
$5 B$	1.0	0.85	0.7

Total Lateral Resistance of Piering System
Lateral Resistance $=1$ st Backfill + 2nd Backfill + Other Backfills + Slab + Unpiered + Passive Pressure on Footing + Pier Passive + Tiebacks Total Lateral Resistance $=\mathbf{2 3 1 1} \mathrm{lbs}+0 \mathrm{lbs}+0 \mathrm{lbs}+\mathbf{3 3 7 5} \mathrm{lbs}+12026 \mathrm{lbs}+198 \mathrm{lbs}+\mathbf{0} \mathrm{lbs}+\mathbf{0} \mathrm{lbs}=17910 \mathrm{lbs}$

Factor of Safety = 1.1
Allowable Resistance $=16282$ Ibs >15070 Ibs OK
Polyurethane Foam Capacity
Compressive Strength of Foam = 67.0 psi Diameter of Pier = 2.875 in \varnothing
Area of Pier Bearing on Foam $=69.00 \mathrm{in}^{2}$ Bearing Strength of Pier on Foam = 4623 lb Factor of Safety = 2.0
Bearing Strength of Pier on Foam $=2312 \mathrm{lb} \quad$ OK, Soil Bearing Controls

	$\begin{array}{\|l\|} \hline \text { PROJECT NO. } \\ \text { MFR23-021 } \end{array}$	SHEET NO.
$\begin{aligned} & \text { PROJECT } \\ & \text { Johnson Residence Residence Underpinning } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Existing Lateral Resistance Along Gridline F		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.
Passive Pressure From Perpendicular Return Walls (Along Gridline F)

$$
\begin{aligned}
\text { Effective Friction Angle } & =29^{\circ} \\
\text { Passive Coefficient, } K_{p} & =\tan ^{\wedge} 2^{\star}\left(45+\varnothing^{\prime} / 2\right) \\
K_{p} & =2.88
\end{aligned}
$$

Soil Unit Weight, $\gamma=110 \mathrm{pcf}$
Passive Pressure, $\mathrm{Pp}=\mathrm{K}_{\mathrm{p}}{ }^{*} \mathrm{Y}=317 \mathrm{pcf}$
Ext Buried Soil Depth, $\mathrm{d}_{\mathrm{e}}=\mathrm{d}-12$ "-dexp $=0.5 \mathrm{ft}$
Int Buried Soil Depth, $\mathrm{d}_{\mathrm{i}}=\mathrm{df}-12 \mathrm{I} \mathrm{\prime}=0.0 \mathrm{ft}$
$A=P p^{*}\left(d_{e}\right)=79 \mathrm{psf}$
$B=P^{*}\left(d_{i}\right)=0 \mathrm{psf}$
$\mathrm{w}_{\text {ext }}=\mathrm{A}^{*} \mathrm{~d}_{\mathrm{e}} / 2=40 \mathrm{plf}$
$w_{\text {int }}=B^{*} d_{i} / 2=0$ plf

Footing/Foundation Wall Loading

Note: Section about is a general representation of a concrete footing. Refer to plans for specific details

Exterior Length Due to Moment, $L_{\text {ext }}=\sqrt{ }\left(8^{*} \phi^{*} f_{r}{ }^{*} I_{\text {gext }} /\left(y_{t}^{*} w_{\text {ext }}\right) / 2=5.00 \mathrm{ft}\right.$ Interior Length Due to Moment, $\mathrm{L}_{\text {int }}=\sqrt{ }\left(8^{*} \phi^{*} \mathrm{f}_{\mathrm{r}}{ }^{*} \mathrm{l}_{\text {gint }} /\left(\mathrm{y}_{\mathrm{t}}{ }^{*} \mathrm{w}_{\text {ext }}\right) / 2=0.00 \mathrm{ft}\right.$ Exterior Length Due to Shear, $L_{\text {ext }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\text {ext }}=5.00 \mathrm{ft}$ Interior Length Due to Shear, $\mathrm{L}_{\text {int }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\text {int }}=0.00 \mathrm{ft}$
$R p_{\text {ext }}=w_{\text {ext }}{ }^{*} L_{\text {ext }}=198 \mathrm{lbs}$
$R p_{\text {int }}=w_{\text {int }}{ }^{*} L_{\text {int }}=0 \mathrm{lbs}$
Lateral Capacity, $R p=R p_{\text {ext }}+R p_{\text {int }}=198 \mathrm{lbs}$
Slab on Grade Frictional Resistance
Slab Along This Line = Yes
Coeficient of Soil Friction $=0.30$
Length of Resisting Line $=30 \mathrm{ft}$
Tributary Width of Slab $=5 \mathrm{ft}$
Slab Thickness $=4$ in
Concrete Weight $=150.0 \mathrm{pcf}$
Soil Friction Vresist $=2250$ lbs

Footing Frictional Resistance Along Gridline F

Unpiered Portion of Gridline F = No
Soil Friction $V_{\text {resist }}=0 \mathrm{lbs}$

$\begin{array}{l\|l\|l\|} \hline \text { Sfa } & \text { SFA Degign EraLD, LLC } \\ \cline { 2 - 3 } & \text { STRUCTURAL \| GEOTECHNICAL \| SPECIAL INSPECTIONS } \end{array}$	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		$\begin{aligned} & \hline \text { DATE } \\ & 11 / 2 / 2023 \end{aligned}$
SUBJECT Existing Lateral Resistance Along Gridline 1		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.
Passive Pressure From Perpendicular Return Walls (Along Gridline 1)

$$
\text { Effective Friction Angle }=29^{\circ}
$$

Passive Coefficient, $K_{p}=\tan ^{\wedge} 2^{*}\left(45+\varnothing^{\prime} / 2\right)$
$K_{p}=2.88$
Soil Unit Weight, $\gamma=110 \mathrm{pcf}$
Passive Pressure, $\mathrm{Pp}=\mathrm{K}_{\mathrm{p}}{ }^{*} \mathrm{Y}=317 \mathrm{pcf}$
Ext Buried Soil Depth, $\mathrm{d}_{\mathrm{e}}=\mathrm{d}-12$ "-dexp $=0.5 \mathrm{ft}$
Int Buried Soil Depth, $\mathrm{d}_{\mathrm{i}}=\mathrm{df}-12^{\prime \prime}=0.0 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{e}}\right)=79 \mathrm{psf} \\
& \mathrm{~B}=\mathrm{Pp}^{*}\left(\mathrm{~d}_{\mathrm{i}}\right)=0 \mathrm{psf} \\
& \mathrm{w}_{\text {ext }}=\mathrm{A}^{*} \mathrm{~d}_{\mathrm{e}} / 2=40 \mathrm{plf} \\
& \mathrm{w}_{\text {int }}=\mathrm{B}^{*} \mathrm{~d}_{\mathrm{i}} / 2=0 \mathrm{plf}
\end{aligned}
$$

Footing/Foundation Wall Loading

Slab on Grade Frictional Resistance
Slab Along This Line = Yes

$$
\text { Coeficient of Soil Friction }=0.30
$$

$$
\text { Length of Resisting Line }=28 \mathrm{ft}
$$

$$
\text { Tributary Width of Slab }=5 \mathrm{ft}
$$

$$
\text { Slab Thickness = } 4 \text { in }
$$

$$
\text { Concrete Weight }=150.0 \mathrm{pcf}
$$

$$
\text { Soil Friction VRESIST }=2100 \mathrm{lbs}
$$

Footing Frictional Resistance Along Gridline 1
Unpiered Portion of Gridline 1 = Yes
Coeficient of Soil Friction $=0.30$
Length of Resisting Line $=11 \mathrm{ft}$
Dead Load Above $=1567$ plf
Soil Friction Vresist $=5172 \mathrm{lbs}$

Table 10.7.2.4-1—Pile P-Multipliers, P_{m}, for Multiple Row Shading (averaged from Hannigan et al., 2006)

Pile $C T C$ spacing (in the direction of loading)	P-Multipliers, P_{m}		
	Row 1	Row 2	Row 3 and higher
$3 B$	0.8	0.4	0.3
$5 B$	1.0	0.85	0.7

Total Lateral Resistance of Piering System
Lateral Resistance $=1$ st Backfill + 2nd Backfill + Other Backfills + Slab + Unpiered + Passive Pressure on Footing + Pier Passive + Tiebacks Total Lateral Resistance $=\mathbf{2 3 1 1} \mathrm{lbs}+0 \mathrm{lbs}+0 \mathrm{lbs}+\mathbf{2 1 0 0} \mathrm{lbs}+5172 \mathrm{lbs}+198 \mathrm{lbs}+0 \mathrm{lbs}+0 \mathrm{lbs}=\mathbf{9 7 8 1} \mathrm{lbs}$

Factor of Safety = 1.1
Allowable Resistance $=8892$ lbs >7498 lbs OK
Polyurethane Foam Capacity
Compressive Strength of Foam = 67.0 psi Diameter of Pier $=\quad 2.875$ in \varnothing
Area of Pier Bearing on Foam $=69.00 \mathrm{in}^{2}$ Bearing Strength of Pier on Foam = 4623 lb Factor of Safety $=\quad 2.0$
Bearing Strength of Pier on Foam $=2312 \mathrm{lb} \quad$ OK, Soil Bearing Controls

	$\begin{array}{\|l\|} \hline \text { PROJECT NO. } \\ \text { MFR23-021 } \end{array}$	SHEET NO.
$\begin{aligned} & \text { PROJECT } \\ & \text { Johnson Residence Residence Underpinning } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { DATE } \\ 11 / 2 / 2023 \\ \hline \end{array}$
SUBJECT Existing Lateral Resistance Along Gridline 5		$\begin{aligned} & \hline \mathrm{BY} \\ & \mathrm{JB} \end{aligned}$

Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.
Passive Pressure From Perpendicular Return Walls (Along Gridline 5)

> Effective Friction Angle $=29^{\circ}$
> Passive Coefficient, $K_{p}=\tan ^{\wedge} 2^{\star}\left(45+\phi^{\prime} / 2\right)$

$$
K_{p}=2.88
$$

Soil Unit Weight, $\gamma=110 \mathrm{pcf}$
Passive Pressure, $\mathrm{Pp}=\mathrm{K}_{\mathrm{p}}{ }^{*} \mathrm{Y}=317 \mathrm{pcf}$
Ext Buried Soil Depth, $\mathrm{d}_{\mathrm{e}}=\mathrm{d}-12$ "-dexp $=0.5 \mathrm{ft}$
Int Buried Soil Depth, $\mathrm{d}_{\mathrm{i}}=\mathrm{df}-12 \mathrm{I} \mathrm{\prime}=0.0 \mathrm{ft}$
$A=P p^{*}\left(d_{e}\right)=79 \mathrm{psf}$
$B=P^{*}\left(d_{i}\right)=0 \mathrm{psf}$
$\mathrm{w}_{\text {ext }}=\mathrm{A}^{*} \mathrm{~d}_{\mathrm{e}} / 2=40 \mathrm{plf}$
$\mathrm{w}_{\text {int }}=\mathrm{B}^{*} \mathrm{~d}_{\mathrm{i}} / 2=0 \mathrm{plf}$

Footing/Foundation Wall Loading

Note: Section about is a general representation of a concrete footing. Refer to plans for specific details

Exterior Length Due to Moment, $L_{\text {ext }}=\sqrt{ }\left(8^{*} \phi^{*} f_{r}{ }^{*} I_{\text {gext }} /\left(y_{t}{ }^{*} W_{\text {ext }}\right) / 2=5.00 \mathrm{ft}\right.$ Interior Length Due to Moment, $\mathrm{L}_{\text {int }}=\sqrt{ }\left(8^{*} \phi^{*} \mathrm{f}_{\mathrm{r}}{ }^{\star} \mathrm{I}_{\text {gint }}\left(\mathrm{y}_{\mathrm{t}}{ }^{*} \mathrm{~W}_{\text {ext }}\right) / 2=0.00 \mathrm{ft}\right.$

$$
\text { Exterior Length Due to Shear, } L_{\text {ext }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\mathrm{ext}}=5.00 \mathrm{ft}
$$

Interior Length Due to Shear, $\mathrm{L}_{\text {int }}=0.5 \phi \mathrm{~V}_{\mathrm{u}} / \mathrm{w}_{\text {int }}=0.00 \mathrm{ft}$
$R p_{\text {ext }}=w_{\text {ext }}{ }^{*} L_{\text {ext }}=198 \mathrm{lbs}$
$R p_{\text {int }}=w_{\text {int }}{ }^{*} L_{\text {int }}=0 \mathrm{lbs}$
Lateral Capacity, $R p=R p_{\text {ext }}+R p_{\text {int }}=198 \mathrm{lbs}$
Slab on Grade Frictional Resistance
Slab Along This Line $=$ Yes
Coeficient of Soil Friction $=0.30$
Length of Resisting Line $=28 \mathrm{ft}$
Tributary Width of Slab $=5 \mathrm{ft}$
Slab Thickness $=4$ in
Concrete Weight $=150.0 \mathrm{pcf}$
Soil Friction Vresist $=2100 \mathrm{lbs}$

Footing Frictional Resistance Along Gridline 5

Unpiered Portion of Gridline $5=$ No Soil Friction VRESISt $=0 \mathrm{lbs}$

Worst Case Lateral Load Along Gridline $5=4550$ lbs
Total Available Lateral Resistance Along Gridline $5=2089$ lbs Additional Lateral Resistance of 2461 lbs Required
5FA Design Group, llc
sfa
STRUCTURAL | GEOTECHNICAL | SPECIAL INSPECTIONS

PROJECT

Johnson Residence Residence Underpinning
SUBJECT
Concrete Backfill(s) Along Gridline 5
1/2/2023
Backfill Information
Backfill Type $=$ Polyurethane Foam
Concrete Backfill Dimensions

Effective Friction Angle $=$	26°
Passive Coefficient, $\mathrm{K}_{\mathrm{p}}=$	$\tan ^{\wedge} 2^{*}\left(45+\phi^{\prime} / 2\right)$
$\mathrm{K}_{\mathrm{p}}=$	2.57
Passive Pressure, $\mathrm{Pp}=$	$2.57 * 100=257 \mathrm{pcf}$
Cohesion, $\mathrm{c}^{\prime}=$	1500 psf
Soil Unit Weight, $\gamma=$	100 pcf
Depth of Backfill, $\mathrm{d}=$	2.0 ft
Width of Backfill, $w=$	1.5 ft
Depth to Backfill, $\mathrm{r}=$	2.0 ft
Soil Neglected $=$	1.0 ft
Backfill Depth Below Grade $=$	4.0 ft

Passive Lateral Resistance Acting on Concrete Backfill

LOADING DIAGRAM PER PIER

Lateral Resistance per Pier

Table 10.7.24-1—Pile P-Multipliers, P_{m}, for Multiple Row Shading (averaged from Hannigan et al., 2006)

Pile $C T C$ spacing (in the direction of loading)	P-Multipliers, P_{m}		
	Row 1	Row 2	Row 3 and higher
$3 B$	0.8	0.4	0.3
$5 B$	1.0	0.85	0.7

Total Lateral Resistance of Piering System
Lateral Resistance = 1st Backfill + 2nd Backfill + Other Backfills + Slab + Unpiered + Passive Pressure on Footing + Pier Passive + Tiebacks Total Lateral Resistance $=\mathbf{2 3 1 1} \mathbf{l b s}+1964 \mathrm{lbs}+0 \mathrm{lbs}+\mathbf{2 1 0 0} \mathrm{lbs}+0 \mathrm{lbs}+198 \mathrm{lbs}+\mathbf{0} \mathrm{lbs}+0 \mathrm{lbs}=\mathbf{6 5 7 3} \mathrm{lbs}$

Factor of Safety = $\quad 1.1$
Allowable Resistance $=5976$ lbs >4550 lbs OK
Polyurethane Foam Capacity
Compressive Strength of Foam = 67.0 psi Diameter of Pier = 2.875 in \varnothing
Area of Pier Bearing on Foam $=69.00 \mathrm{in}^{2}$ Bearing Strength of Pier on Foam = 4623 lb Factor of Safety = 2.0
Bearing Strength of Pier on Foam $=2312 \mathrm{lb} \quad$ OK, Soil Bearing Controls

Max Load To Tieback = Design Load = 4683 lb
1.5" Solid Square Shaft Tieback Installed at a 15 Degree Angle 0.375 " Thick $10 / 12$ " Helix With 0.25 " Fillet Welds Each Side Of Helix To Pipe Pier Minimum 20'-0" Installation Depth And 1500 ft-lb Installation Torque

Steel Beam

DESCRIPTION: Channel (Upper Half)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2021

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield:
Beam Bracing: Completely Unbraced	E: Modulus :
Bending Axis: Major Axis Bending	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans : L = $0.01330, \mathrm{H}=0.0110 \mathrm{ksf}$, Tributary Width $=6.50 \mathrm{ft}$

Varying Uniform Load : H= 0.0->0.4745 k/ft, Extent $=0.0$-->> 2.0 ft

Steel Beam

DESCRIPTION: Channel (Lower Half)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2021

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield:
Beam Bracing: Completely Unbraced	E: Modulus :
Bending Axis: Major Axis Bending	

Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans : L = 0.01330, H = $0.0110 \mathrm{k} / \mathrm{ft}$

Varying Uniform Load : H=0.9556->0.4745 k/ft, Extent $=0.0$-->> 2.0 ft

Wood Beam

DESCRIPTION: Wood Beam

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2021

Analysis Method :	Allowable Stress Design	$\mathrm{Fb}+$	875 psi	E : Modulus of Elasticity	
Load Combination	IBC 2021	Fb -	875 psi	Ebend- xx	1300 ksi
		Fc- Pril	600 psi	Eminbend - xx	470ksi
Wood Species	Douglas Fir-Larch	Fc-Perp	625 psi		
Wood Grade	No. 2	Fv	170 psi		
Beam		Ft	425 psi	Density	31.21 pcf

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Loads on all spans...
Uniform Load on ALL spans : D = 0.0240, L = 0.040 ksf, Tributary Width $=2.0 \mathrm{ft}$
Point Load: D = 0.2160, L = $0.360 \mathrm{k} @ 3.917 \mathrm{ft}$

DESIGN SUMMARY					Design OK	
Maximum Bending Stress Ratio	1.000: 1	Maximum Shear Stress Ratio		=	0.341 : 1	
Section used for this span	4×10	Section used for this span			4x10	
fb : Actual	1,049.58 psi	fv: Actual		=	56.19 psi	
F'b	1,050.00 psi	F'v		=	164.90 psi	
Load Combination	+D+L	Load Combination			+D+L	
Location of maximum on span	5.723 ft	Location of maximum on span		=	0.000 ft	
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs		=	Span \# 1	
Maximum Deflection						
Max Downward Transient Deflection	0.358 in Ratio $=$	$469>=360$	Span: 1 : L Only			
Max Upward Transient Deflection	0 in Ratio =	$0<360$	n/a ${ }_{\text {Span }} 1 \cdot+\mathrm{D}+\mathrm{L}$			
Max Downward Total Deflection	0.572 in Ratio $=$	$293>=240$				
Max Upward Total Deflection	0 in Ratio =	$0<240$	n/a			
Vertical Reactions		upport notation : Far left is \#1		Values in KIPS		
Load Combination	Support 1 Support 2					
Max Upward from all Load Conditions	1.311					
Max Upward from Load Combinations	1.311					
Max Upward from Load Cases	0.819					
D Only	0.492					
+D+L	1.311					
+D+0.750L	1.106					
+0.60D	0.295 0.	. 31				
L Only	0.819					

Wood Column

SFA ENGINEERING LLC
(c) ENERCALC INC 1983-2023

DESCRIPTION: Wood Post
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Analysis Method	Allowable Stress Design			Wood Section Name $\mathbf{4 x 4}$			
End Fixities	Top \& Bottom Pinned			Wood Grading/Manuf. Graded		mber	
Overall Column Height (Used for non-slender calculations)			8 ft	Wood Member Type Sawn			
Wood Species	Douglas Fir-Larch			Exact Width 3.50 in	3.50 in Allow Stress Modification Factors		
Wood Grade	No. 2			Exact Depth	$\begin{array}{r} 3.50 \mathrm{in} \\ 12.250 \mathrm{in}^{\wedge} \end{array}$	Cf or Cv for Compres	1.150
$\mathrm{Fb}+$	875 psi	Fv	170	Ix	$12.505 \mathrm{in}^{\wedge} 4$	Cf or Cv for Tension	1.50
Fb -	875 psi	Ft	425	ly	$12.505 \mathrm{in}^{\wedge} 4$	Cm : Wet Use Factor	1.0
Fc-Prll	600 psi	Density	31.21	,	12.505 in 4	Ct : Temperature Fact	1.0
Fc - Perp	625 psi					Cfu : Flat Use Factor	1.0
E : Modulus of E	asticity . . .	$\mathrm{x}-\mathrm{x}$ Bending	$y-y$ Bending			Kf : Built-up columns	1.0
	Basic	1300	1300	ksi		Use Cr : Repetitive?	No
	Minimum	470	470	Column Buckling Condition:			
				ABOUT X-X Axis: $L u x=8 \mathrm{ft}, \mathrm{Kx}=1.0$			
				ABOUT Y-Y Axis: Luy = $8 \mathrm{ft}, \mathrm{Ky}=1.0$			

Column self weight included : 21.240 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $8.0 \mathrm{ft}, \mathrm{Xecc}=1.0 \mathrm{in}, \mathrm{Yecc}=1.0 \mathrm{in}, \mathrm{D}=0.4920, \mathrm{~L}=0.8190 \mathrm{k}$
DESIGN SUMMARY

Maximum Reactions
Note: Only non-zero reactions are listed.

Load Combination	X-X Axis Reaction @ Base @ Top		k	Y-Y Axis R @ Base	Reaction @ Top	Axial Reaction @ Base	My - End Moments k-ft @ Base @ Top	Mx - End Moments @ Base @ Top
D Only	-0.005	0.005		-0.005	0.005	0.513		
+D+L	-0.014	0.014		-0.014	0.014	1.332		
+D+0.750L	-0.012	0.012		-0.012	0.012	1.127		
+0.60D	-0.003	0.003		-0.003	0.003	0.308		
L Only	-0.009	0.009		-0.009	0.009	0.819		

[^0]: Max Load To Pier = Design Load = 14063 lb
 2.875" Diameter Pipe Pier with 0.165" Thick Wall
 3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall

 Minimum 6'-0" Installation Depth And Minimum 3000 psi Installation Pressure
 Minimum $1 / 4^{\prime \prime}$ Foundation Lift During Installation

