

STRUCTURAL CALCULATIONS REVISION #2

Johnson Residence Residence Underpinning

9251 SE 46th St., Mercer Island, WA 98466

LIMITATIONS

ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY, OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS.

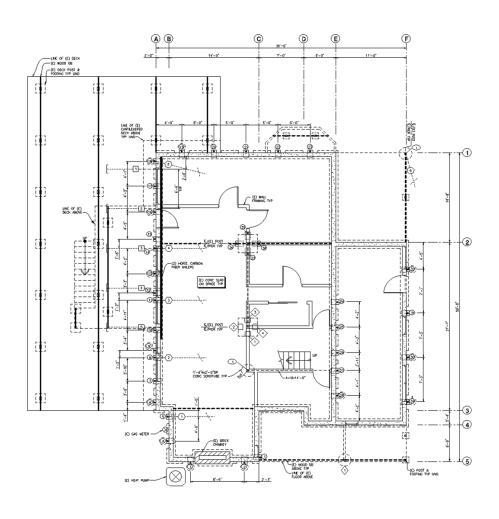
> Project No. MFR23-021 November 2, 2023

Revised: November 2, 2023

SFA Design Group, LLC

PROJECT NO. MFR23-021	SHEET NO.
	DATE
	11/2/2023
	BY
	JB

Structural Narrative


The structural calculations and drawings enclosed are in reference to the design of the foundation underpinning of the 2-story residence located in Mercer Island, WA as referenced on the coversheet. The round steel tubes and retrofit brackets are used to stabilize and/or lift settling foundations. The bottom and back portion of the bracket is securely seated against the existing concrete footing. Using the weight of the existing structure, pier sections are continuously hydraulically driven through the foundation bracket and into the soil below until a load bearing stratum is encountered. Lateral earth confinement and a driven external sleeve with a starter pier provide additional stiffness to resist eccentric loading from the foundation. Once all piers are installed, they are simultaneously loaded with individual hydraulic jacks and closely monitored as pressure is applied to achieve desired stabilization and/or lift prior to locking off the pier cap. The piers are required to resist vertical loading from the roof framing, wall framing, floor framing, concrete slab on grade, and concrete foundation. Underpinning the structure will remove lateral resistance provided by soil friction acting on the concrete foundation. By inspection, lateral resistance will be provided by soil friction acting on the unpiered portions of the concrete footing/concrete slab on grade and passive pressure acting on the buried footings perpendicular to the piered gridlines.

There is no ICC-ES report currently approved for underpinning systems within Seismic Design Category D or higher, thus the entire underpinning system has been reviewed and analyzed and is therefore a fully engineered system complying with all current codes and stamped by a licensed design professional. Deep foundation guidelines, load combinations, special inspection and testing requirements per IBC 2018 have been included. Axial and bending capacities of the external sleeve, analysis of the retrofit foundation bracket, design reductions, and corrosion considerations have been incorporated in all required calculations per AISC 360-10. Concrete foundation span capacities have been analyzed per ACI318-14. Bracket fabrication welding has been performed by Behlen Mfg Co. conforming to AWS D1.1 performed by CWB gualified welders certified to CSA Standard W47.1 in Division 2. In addition, Behlen Mfg Co. has received US99/1690 certification meeting ISO 9001:2008 requirements by ANAB accredited SGS.

General	
Building Department	City of Mercer Island
Building Code Conformance (Meets Or Exceeds Requirements)	
2021 International Building Code (IBC)	
2021 International Residential Code (IRC)	
2021 Washington Building Code	
2021 Washington Residential Code	
Dead Loads	
Roof Dead Load	15.0 psf
Floor Dead Load	15.0 psf
Wood Wall Dead Load	12.0 psf
Interior Wall Dead Load	9.0 psf
Deck Dead Load	12.0 psf
CMU Wall Dead Load	81.0 psf
Brick Wall Dead Load	39.0 psf
Concrete	150.0 pcf
Live Loads	
Roof Snow Load	25.0 psf
Deck Live Load	60.0 psf
Floor Live Load (Residential)	40.0 psf

SFA Design Group, LLC	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	SHEET NO.
PROJECT	-	DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Project Layout		JB

Project Layout (See S2.1 for Enlarged Plan)

SFA Design Group, LLC

	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

Worst Case Vertical Design Loads (Gridline B.9)

Load Type	Design Load	Tributary Length	Line Load		
Roofdl =	(15 psf)	(14.00 ft)	= 210 plf	Dead Load	0.850 kips
RoofSL =	(25 psf)	(14.00 ft)	= 350 plf	Floor Live Load	1.067 kips
2ndFloorDL =	(15 psf)	(13.33 ft)	= 200 plf	Roof Snow Load	0.350 kips
2ndFloorLL =	(40 psf)	(13.33 ft)	= 533 plf	Controlling ASD Load C	ombination:
1stFloordL =	(15 psf)	(13.33 ft)	= 200 plf	D+L	
1stFloorLL =	(40 psf)	(13.33 ft)	= 533 plf		
InteriorWallpL =	(9 psf)	(26.67 ft)	= 240 plf		
			-		

Max Vertical Load to Worst Case Pier

1.917 kips

Г

General Bean	n Analysis				Proj	ect File: calcs.ec6
_IC# : KW-06015057, Bu	iild:20.23.08.01		SFA ENGINEERING	G LLC	(c) ENE	RCALC INC 1983-2023
DESCRIPTION:	(E) FLoor Beam	GL B.9 (For Lo	ad Generation	Only)		
eneral Beam Pro	operties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	13.750 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4
×						×
•			Span = 13.750	ft		
1						I
pplied Loads				Service loads ente	red. Load Factors will be app	lied for calculations

Loads on all spans... Uniform Load on ALL spans : D = 0.850, L = 1.067, S = 0.350 k/ft, Tributary Width = 1.0 ft

DESIGN SUMMARY

+D+0.750L

+0.60D

L Only

S Only

+D+0.750L+0.750S

11.345

13.150

3.506

7.336

2.406

11.345

13.150

3.506

7.336

2.406

Maximum Bending =		4	45.304 k-ft	Maximum Shear =		13.179 k
Load Combination			+D+L Load Combination			+D+L
Span # where maximu	Span # where maximum occurs		an # 1	Span # where maximum occurs	6	Span # 1
Location of maximum of	Location of maximum on span		6.875 ft	Location of maximum on span		0.000 ft
Maximum Deflection						
Max Downward Transi	ent Deflection		0.298 in	553		
Max Upward Transient	Deflection		0.002 in	106243		
Max Downward Total	Max Downward Total Deflection		0.536 in	307		
Max Upward Total Def	lection		0.002 in	72911		
ertical Reactions				Support notation : Far left is #	Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	13.179	13.179				
Overall MINimum						
D Only	5.844	5.844				
+D+L	13.179	13.179				
+D+S	8.250	8.250				

DESCRIPTION: (N) Beam GL B.9)				
ODE REFERENCES					
Calculations per NDS 2018, IBC 2018, Load Combination Set : IBC 2021	CBC 2019, ASCE 7-	16			
Aterial Properties					
			0400 mai	E : Madulua of Elas	tiaity
Analysis Method : Allowable Stress Desigr Load Combination : IBC 2021	n	Fb + Fb - Fc - Prll	2400 psi 2400 psi 1550 psi	<i>E : Modulus of Elas</i> Ebend- xx Eminbend - xx	<i>ticity</i> 1800ksi 950ksi
Wood Species : DF/HF Wood Grade : 24F-V10		Fc - Perp Fv Ft	650 psi 215 psi 1150 psi	Ebend- yy Eminbend - yy Density	1500ksi 790ksi 26.84pcf
Beam Bracing : Beam is Fully Braced ag	gainst lateral-torsional l	buckling		Denety	2010 1 0 0
- - - - - - - - - - - - - -	D(0.)	850) L(1.067) S(0.350) ☆		↓	
		3.5x11.25 Span = 7.167 ft			
-					
••	ated and added	Service	loads entered. Load	Factors will be applied	for calculations.
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans: D = 0			loads entered. Load		for calculations.
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio =	.850, L = 1.067, S = 0.834: 1	= 0.350 k/ft Maximum S	hear Stress Ratio		Design OK 0.934:1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	.850, L = 1.067, S = 0.834: 1 3.5x11.25	= 0.350 k/ft Maximum S Sectior	hear Stress Ratio used for this span		Design OK 0.934:1 3.5x11.25
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual =	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps	= 0.350 k/ft Maximum S Sectior si	hear Stress Ratio used for this span fv: Actual		Design OK 0.934:1 3.5x11.25 194.84 psi
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	.850, L = 1.067, S = 0.834: 1 3.5x11.25	= 0.350 k/ft Maximum S Sectior si	hear Stress Ratio used for this span	=	Design OK 0.934 : 1 3.5x11.25
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual F'b = Load Combination	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L	= 0.350 k/ft Maximum S Sectior si si Load C	hear Stress Ratio used for this span fv: Actual F'v ombination	= = =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b =	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps	= 0.350 k/ft Maximum S Sectior si si Load C Locatic	hear Stress Ratio used for this span fv: Actual F'v	= = = = an =	Design OK 0.934:1 3.5x11.25 194.84 psi 208.55 psi
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1	= 0.350 k/ft Maximum S Sectior si si Load C Locatio Span #	thear Stress Ratio a used for this span fv: Actual F'v ombination n of maximum on spa where maximum occ	= = = = an =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatic Span # = 908 >=360	hear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on spa where maximum occ Span: 1 : L Only	= = = = an =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatic Span # = 908 >=360 = 0 <360	thear Stress Ratio a used for this span fv: Actual F'v ombination n of maximum on span where maximum occ Span: 1 : L Only n/a	= = = = an =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 505 >=240	hear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on spa where maximum occ Span: 1 : L Only	= = = = an =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatio Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <240 Support notatior	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = = an =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatio Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <240 Support notatior	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Sectior si si Load C Locatio Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <240 Support notatior	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Downward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0 in Ratio 0 in Ratio 0 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Section si si Load C Locatio Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula oads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Section si si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Section si si Load C Locatio Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	.850, L = 1.067, S = 0.834 1 3.5x11.25 2,000.63 p 2,400.00 p +D+L 3.584ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio	= 0.350 k/ft Maximum S Section si si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Rat	= 0.350 k/ft Maximum S Sectior si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824 3.046	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Rat	= 0.350 k/ft Maximum S Section si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824 3.046 6.870	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L +D+S	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Rat	= 0.350 k/ft Maximum S Section si si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824 3.046 6.870 4.300	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
Beam self weight NOT internally calcula Loads on all spans Uniform Load on ALL spans : D = 0 ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward from Load Conditions Max Upward from Load Conditions Max Upward from Load Cases D Only +D+L +D+S +D+0.750L	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio	= 0.350 k/ft Maximum S Section si si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824 3.046 6.870 4.300 5.914	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1
ESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span fb: Actual F'b Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Cases D Only +D+L +D+S +D+0.750L +D+0.750L+0.750S	.850, L = 1.067, S = 0.834: 1 3.5x11.25 2,000.63 ps 2,400.00 ps +D+L 3.584 ft Span # 1 0.095 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio 0 in Ratio 0.170 in Ratio	= 0.350 k/ft Maximum S Section si Load C Locatic Span # = 908 >=360 = 0 <360 = 0 <360 = 0 <240 Support notation port 2 6.870 6.870 3.824 3.046 6.870 4.300 5.914 6.854	thear Stress Ratio in used for this span fv: Actual F'v combination in of maximum on span where maximum occ Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = an = curs =	Design OK 0.934 : 1 3.5x11.25 194.84 psi 208.55 psi +D+L 6.252 ft Span # 1

Wood Beam

LIC# : KW-06015057, Build:20.23.08.01

SFA ENGINEERING LLC

Project File: calcs.ec6

(c) ENERCALC INC 1983-2023

SFA Design Group, LLC

sfa structural geotechnical special inspections	PROJECT NO. MFR23-021	SHEET NO.
PROJECT	IMFR23-021	DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

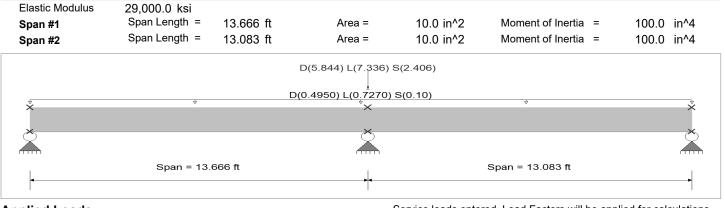
Worst Case Vertical Design Loads (Gridline 2)

Load Type	Design Load	Tributary Length	Line Load		
Roofdl =	(15 psf)	(4.00 ft)	= 60 plf	Dead Load	0.496 kips
RoofSL =	(25 psf)	(4.00 ft)	= 100 plf	Floor Live Load	0.726 kips
2ndFloorDL =	(15 psf)	(9.08 ft)	= 136 plf	Roof Snow Load	0.100 kips
2ndFloorLL =	(40 psf)	(9.08 ft)	= 363 plf	Controlling ASD Load C	ombination:
1stFloorDL =	(15 psf)	(9.08 ft)	= 136 plf	D+L	
1stFloorLL =	(40 psf)	(9.08 ft)	= 363 plf		
InteriorWalloL =	(9 psf)	(18.17 ft)	= 164 plf		

Max Vertical Load to Worst Case Pier

1.222 kips

Г


General Beam Analysis

Project File: calcs.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06015057, Build:20.23.08.01 SFA ENGINEERING LLC **DESCRIPTION:** (E) FLoor Beam GL 2 (For Load Generation Only)

General Beam Properties

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Loads on all spans...

Uniform Load on ALL spans : D = 0.4950, L = 0.7270, S = 0.10 k/ft, Tributary Width = 1.0 ft

Load(s) for Span Number 1 Point Load : D = 5.844, L = 7.336, S = 2.406 k @ 13.666 ft

DESIGN SUMMARY

Maximum Bending = Load Combination	27.362 k-ft +D+L	Maximum Shear = Load Combination	10.352 k +D+L
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on span	13.666 ft	Location of maximum on span	13.666 ft
Maximum Deflection Max Downward Transient Deflection	0.088 in	1872	
Max Upward Transient Deflection	0.000 in	0	
Max Downward Total Deflection	0.147 in	1114	
Max Upward Total Deflection	0.001 in	285725	

Vertical Reactions				Support notation : Far left is #′	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3	3		
Overall MAXimum	6.348	33.617	5.902			
Overall MINimum						
D Only	2.571	14.123	2.391			
+D+L	6.348	33.617	5.902			
+D+S	3.091	18.201	2.874			
+D+0.750L	5.404	28.744	5.024			
+D+0.750L+0.750S	5.793	31.802	5.387			
+0.60D	1.543	8.474	1.435			
L Only	3.776	19.495	3.511			
S Only	0.519	4.078	0.483			

SFA Design Group, LLC		
	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

Worst Case Vertical Design Loads (Gridline 3)

RoofSL =		(4.00 ft) (4.00 ft)	= 60 plf	Dead Load	0.252 kips
	(25 psf)	(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	100.15		
2ndFloord =		(4.00 II)	= 100 plf	Floor Live Load	0.320 kips
	(15 psf)	(4.00 ft)	= 60 plf	Roof Snow Load	0.100 kips
2ndFloor∟∟ =	(40 psf)	(4.00 ft)	= 160 plf	Controlling ASD Load Combina	ation:
1stFloor⊳∟ =	(15 psf)	(4.00 ft)	= 60 plf	D+L	
1stFloor∟∟ =	(40 psf)	(4.00 ft)	= 160 plf		
InteriorWallo∟ =	(9 psf)	(8.00 ft)	= 72 plf		

Max Vertical Load to Worst Case Pier

0.572 kips

eneral Beam						-	ject File: calcs.ec6
C# : KW-06015057, Buil			FA ENGINEERIN			(c) ENEI	RCALC INC 1983-20
ESCRIPTION:	(E) FLOOR Beam	GL 3 (For Load C	seneration O	niy)			
neral Beam Pro	perties						
Elastic Modulus	29,000.0 ksi						
Span #1	Span Length =	12.667 ft	Area =	10.0 in^2	Moment of	Inertia =	100.0 in^4
					D(5.84	14) L(7.336)	S(2.406)
	<u>+</u>	D(0.2520)	L(0.320) S(0.1	0)			
×	♥		V	▽		×	
<u>ð</u>						<u> </u>	
		Spar	n = 12.667 ft			*	
						I	
plied Loads				Service loads ente	red. Load Facto	rs will be app	blied for calculation
		S = 2.406 k @ 12		Tributary Width =			
SIGN SUMMAR	= 5.844, L = 7.336, Y	S = 2.406 k @ 12	.667 ft				2 C22 k
Point Load : D = ESIGN SUMMAR Maximum Bending	= 5.844, L = 7.336, P Y g =	S = 2.406 k @ 12 11.472	.667 ft k-ft Maxim	hum Shear =			3.623 k +D+l
Point Load:D = SIGN SUMMAR Maximum Bending Load Combination	= 5.844, L = 7.336, P Y g =	S = 2.406 k @ 12 11.472 +D+L	.667 ft k-ft Maxim	num Shear = Load Combination			+D+L
Point Load : D = SIGN SUMMAR Maximum Bending Load Combination Span # where ma	= 5.844, L = 7.336, PY g = n ximum occurs	S = 2.406 k @ 12 11.472 +D+L Span # 1	.667 ft k-ft Maxim	num Shear = Load Combination Span # where max	kimum occurs		+D+L Span # 1
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim	= 5.844, L = 7.336, PY g = n ximum occurs num on span	S = 2.406 k @ 12 11.472 +D+L	.667 ft k-ft Maxim	num Shear = Load Combination	kimum occurs		+D+L
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti	= 5.844, L = 7.336, PY g = n ximum occurs num on span	S = 2.406 k @ 12 11.472 +D+L Span # 1	.667 ft k-ft Maxim ft	num Shear = Load Combination Span # where max	kimum occurs		+D+L Span # 1
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333	.667 ft k-ft Maxim ft	hum Shear = Load Combination Span # where max Location of maxim	kimum occurs		+D+L Span # 1
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Downward T	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection usient Deflection otal Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115	k-ft Maxim k-ft Maxim ft in in	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319	kimum occurs		+D+L Span # 1
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection usient Deflection otal Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000	k-ft Maxim k-ft Maxim ft in in	num Shear = Load Combination Span # where max Location of maxim 2359 0	kimum occurs		+D+L Span # 1
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Downward T	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection isient Deflection otal Deflection I Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Downward T Max Upward Tota	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection isient Deflection otal Deflection I Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Downward T Max Upward Tota Prtical Reactions Load Combination Overall MAXimum	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection usient Deflection otal Deflection I Deflection	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = SIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Downward T Max Upward Tota rtical Reactions oad Combination Overall MAXimum Overall MINimum	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection otal Deflection i Deflection I Deflection Support 1 3.623	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = SIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Intical Reactions oad Combination Overall MAXimum Overall MINimum D Only	5.844, L = 7.336, Y g = ximum occurs num on span on ransient Deflection isient Deflection otal Deflection I Deflection Support 1 3.623 1.596	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = SIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Internation Overall Reactions oad Combination Overall MAXimum Overall MINimum D Only +D+L	= 5.844, L = 7.336, \mathbf{Y} \mathbf{g} = ximum occurs hum on span on ransient Deflection otal Deflection I Deflection I Deflection \mathbf{g} Support 1 3.623 1.596 3.623	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = SIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Intical Reactions oad Combination Overall MAXimum Overall MINimum D Only +D+L +D+S	= 5.844, L = 7.336, PY g = ximum occurs hum on span on ransient Deflection otal Deflection I Deflection I Deflection Support 1 3.623 1.596 3.623 2.229	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803 10.479	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Prtical Reactions oad Combination Overall MAXimum Overall MAXimum D Only +D+L +D+S +D+0.750L	= 5.844, L = 7.336, PY g = n ximum occurs num on span on ransient Deflection otal Deflection I Deflection I Deflection Support 1 3.623 1.596 3.623 2.229 3.116	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803 10.479 14.462	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Prtical Reactions oad Combination Overall MAXimum Overall MINimum D Only +D+L +D+S +D+0.750L +D+0.750L +D+0.750S	= 5.844, L = 7.336, PY g = ximum occurs num on span on ransient Deflection otal Deflection I Deflection I Deflection Support 1 3.623 1.596 3.623 2.229 3.116 3.591	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803 10.479 14.462 16.741	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Prtical Reactions .oad Combination Overall MAXimum Overall MINimum D Only +D+L +D+S +D+0.750L +D+0.750L +D+0.750S +0.60D	= 5.844, L = 7.336, PY g = ximum occurs num on span on ransient Deflection isient Deflection I Deflection I Deflection Support 1 3.623 1.596 3.623 2.229 3.116 3.591 0.958	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803 10.479 14.462 16.741 4.464	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft
Point Load : D = ESIGN SUMMAR Maximum Bending Load Combination Span # where ma Location of maxim Maximum Deflecti Max Downward T Max Upward Tran Max Upward Tota Prtical Reactions oad Combination Overall MAXimum Overall MINimum D Only +D+L +D+S +D+0.750L +D+0.750L +D+0.750S	= 5.844, L = 7.336, PY g = ximum occurs num on span on ransient Deflection otal Deflection I Deflection I Deflection Support 1 3.623 1.596 3.623 2.229 3.116 3.591	S = 2.406 k @ 12 11.472 +D+L Span # 1 6.333 0.064 0.000 0.115 0.000 Support 2 16.803 7.440 16.803 10.479 14.462 16.741	k-ft Maxim k-ft Maxim ft in in in in 31	num Shear = Load Combination Span # where max Location of maxim 2359 0 1319 4585	kimum occurs um on span	alues in KIPS	+D+L Span # 1 0.000 ft

SFA Design Group, LLC	
	PROJECT NO. SHEET NO.
Sfa STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021
PROJECT	DATE
Johnson Residence Residence Underpinning	11/2/2023
SUBJECT	BY
Design Loads	JB

Worst Case Vertical Design Loads (Gridline A W/ Tieback)

Tributary Width To Pier =				= 4.25 ft		
Load Type	Design Load	Tributary	Length	Line Load		
Roofdl =	(15 psf)	(16.00 ft)		= 240 plf	Dead Load	7.707 kips
RoofSL =	(25 psf)	(16.00 ft)		= 400 plf	Floor Live Load	5.043 kips
2ndFloordL =	(15 psf)	(6.83 ft)		= 102 plf	Roof Snow Load	1.700 kips
2ndFloorLL =	(40 psf)	(6.83 ft)		= 273 plf	Controlling ASD Load Co	ombination:
1stFloor⊳∟ =	(15 psf)	(6.83 ft)		= 102 plf	D+0.75L+0.75S	
1stFloorLL =	(40 psf)	(6.83 ft)		= 273 plf		
Deckol =	(12 psf)	(8.00 ft)		= 96 plf		
DeckLL =	(60 psf)	(8.00 ft)		= 480 plf		
ConcFloorDL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWalloL =	(9 psf)	(13.67 ft)		= 123 plf		
ExteriorWallpL =	(12 psf)	(18.00 ft)		= 216 plf		
Stemwall _{DL} =	(150 pcf)	(8.00 in)	(72.00 in)	= 600 plf		
FootingDL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
		Max Vertical Loa	ad to Worst C	ase Pier		12.764 kips
	l	Max Unsupporte	ed Ftg Span f	rom Arching Act	tion	13.33 ft

SFA Design Group, LLC			
	PROJECT NO.	SHEET NO.	
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021		
PROJECT		DATE	
Johnson Residence Residence Underpinning		11/2/2023	
SUBJECT		BY	
Design Loads		JB	

Worst Case Vertical Design Loads (Gridline A W/O Tieback)

Tributary Width To Pier =				= 4.17 ft		
<u>Load Type</u>	Design Load	Tributary	<u>Length</u>	Line Load		
RoofpL =	(15 psf)	(16.00 ft)		= 240 plf	Dead Load	7.556 kips
RoofSL =	(25 psf)	(16.00 ft)		= 400 plf	Floor Live Load	4.945 kips
2ndFloordL =	(15 psf)	(6.83 ft)		= 102 plf	Roof Snow Load	1.667 kips
2ndFloorLL =	(40 psf)	(6.83 ft)		= 273 plf	Controlling ASD Load Co	ombination:
1stFloordL =	(15 psf)	(6.83 ft)		= 102 plf	D+0.75L+0.75S	
1stFloor∟∟ =	(40 psf)	(6.83 ft)		= 273 plf		
Deckdl =	(12 psf)	(8.00 ft)		= 96 plf		
DeckLL =	(60 psf)	(8.00 ft)		= 480 plf		
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWall _{DL} =	(9 psf)	(13.67 ft)		= 123 plf		
ExteriorWallpL =	(12 psf)	(18.00 ft)		= 216 plf		
Stemwall _{DL} =	(150 pcf)	(8.00 in)	(72.00 in)	= 600 plf		
Footing⊳∟ =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
		Max Vertical Lo	ad to Worst C	ase Pier		12.515 kips
	l	Max Unsupporte	ed Ftg Span f	rom Arching Act	tion	13.33 ft

	PF	ROJECT NO.	SHEET NO.			
sfa structura	М	FR23-021				
PROJECT						DATE
Johnson Residence	Residence Underpinnir	ng				11/2/2023
SUBJECT						BY
Design Loads						
Design Loads						JB
Worst Case Vertica Tributary Width To P			= 2.50 ft			ΓJB
	·	ine B W/ Tieback) Tributary Length	= 2.50 ft <u>Line Load</u>			JB
Worst Case Vertica Tributary Width To P Load Type	Pier =			Dead Load		
Tributary Width To P	ier = <u>Design Load</u>	Tributary Length	Line Load	Dead Load Floor Live Load		4.088 kips 1.800 kips

(48.00 in)

(72.00 in)

(16.00 in)

Max Unsupported Ftg Span from Arching Action

Max Vertical Load to Worst Case Pier

2ndFloorLL =

1stFloorDL =

1stFloorLL =

ConcFloorDL =

ConcFloorLL =

Stemwall_{DL} =

FootingDL =

InteriorWall_{DL} =

ExteriorWallDL =

(40 psf)

(15 psf)

(40 psf)

(150 pcf)

(40 psf)

(9 psf)

(12 psf)

(150 pcf)

(150 pcf)

(7.00 ft)

(7.00 ft)

(7.00 ft)

(4.00 in)

(4.00 ft)

(14.00 ft)

(18.00 ft)

(8.00 in)

(8.00 in)

= 280 plf

= 105 plf

= 280 plf = 200 plf

= 160 plf

= 126 plf

= 216 plf

= 600 plf

= 133 plf

Controlling ASD Load Combination:

5.907 kips

13.33 ft

D+0.75L+0.75S

	Design Gro			PROJECT NO.	SHEET NO.
STRUCTURA	l Geotechnical Sp	PECIAL INSPECTIONS		MFR23-021	
PROJECT					DATE
Johnson Residence I	Residence Underpinnir	ng			11/2/2023
SUBJECT					BY
Design Loads					JB
	Dosign Loads (Grid)	ing R W/O Tipback)			00
Worst Case Vertical	I Design Loads (Gridl ier =	ine B W/O Tieback)	= 4.00 ft		
Worst Case Vertical Tributary Width To P		ine B W/O Tieback)	= 4.00 ft Line Load		
	ier =			Dead Load	6.541 kips
Worst Case Vertical Tributary Width To P Load Type Roof⊳∟ =	ier = Design Load	Tributary Length	Line Load	Dead Load Floor Live Load	
Worst Case Vertical Tributary Width To P Load Type	ier = <u>Design Load</u> (15 psf)	<u>Tributary Length</u> (10.00 ft)	Line Load = 150 plf		6.541 kips

(48.00 in)

(72.00 in)

(16.00 in)

Max Unsupported Ftg Span from Arching Action

Max Vertical Load to Worst Case Pier

= 105 plf

= 280 plf

= 200 plf = 160 plf

= 126 plf

= 216 plf

= 600 plf

= 133 plf

9.451 kips

13.33 ft

D+0.75L+0.75S

(7.00 ft) (7.00 ft)

(4.00 in)

(4.00 ft)

(14.00 ft)

(18.00 ft)

(8.00 in)

(8.00 in)

(15 psf)

(40 psf)

(150 pcf) (40 psf)

(9 psf)

(12 psf)

(150 pcf) (150 pcf)

1stFloorDL =

1stFloorLL =

ConcFloorDL =

ConcFloorLL =

Stemwall_{DL} =

FootingDL =

InteriorWall_{DL} =

ExteriorWallDL =

SFA Design Group, LLC			
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. S MFR23-021	SHEET NO.	
PROJECT	[DATE	
Johnson Residence Residence Underpinning		11/2/2023	
SUBJECT	Ε	ЗY	
Design Loads		JB	

Worst Case Vertical Design Loads (Gridline E W/ PL)

Tributary Width To Pier =				= 3.50 ft		
Load Type	Design Load	Tributary	Length	Line Load		
Roofdl =	(15 psf)	(19.50 ft)		= 293 plf	Dead Load	8.412 kips
RoofSL =	(25 psf)	(19.50 ft)		= 488 plf	Floor Live Load	5.652 kips
2ndFloordL =	(15 psf)	(12.00 ft)		= 180 plf	Roof Snow Load	1.706 kips
2ndFloor∟∟ =	(40 psf)	(12.00 ft)		= 480 plf	Controlling ASD Load Co	ombination:
1stFloordL =	(15 psf)	(12.00 ft)		= 180 plf	D+L	
1stFloor∟∟ =	(40 psf)	(12.00 ft)		= 480 plf		
ConcFloorDL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWallpL =	(9 psf)	(24.00 ft)		= 216 plf		
ExteriorWallpL =	(12 psf)	(18.00 ft)		= 216 plf		
Stemwall _{DL} =	(150 pcf)	(8.00 in)	(96.00 in)	= 800 plf		
FootingDL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
1stFloor Point LoadDL =	(15 psf)	(6.50 ft)	(6.66 ft)	= 649 lb		
1stFloor Point Load∟∟ =	(40 psf)	(6.50 ft)	(6.66 ft)	= 1732 lb		
		Max Vertical Lo	ad to Worst C	ase Pier		14.063 kips
	[Max Unsupport	ed Ftg Span f	rom Arching Ac	tion	17.33 ft

	CENTROL SECTION CALLES	-			PROJECT NO. MFR23-021	SHEET NO.
PROJECT					•	DATE
Johnson Residence Re	sidence Underpinnir	ıg				11/2/2023
SUBJECT						BY
Design Loads						JB
Worst Case Vertical D	esign Loads (Gridl	ine E W/O PL)				
Tributary Width To Pier	=			= 4.17 ft		
Load Type	Design Load	Tributary	/ Length	Line Load		
Roofdl =	(15 psf)	(19.50 ft)		= 293 plf	Dead Load	8.792 kips
RoofSL =	(25 psf)	(19.50 ft)		= 488 plf	Floor Live Load	4.667 kips
2ndFloordl =	(15 psf)	(12.00 ft)		= 180 plf	Roof Snow Load	2.031 kips
2ndFloorLL =	(40 psf)	(12.00 ft)		= 480 plf	Controlling ASD Load Combir	nation:
1stFloordL =	(15 psf)	(12.00 ft)		= 180 plf	D+0.75L+0.75S	
1stFloorLL =	(40 psf)	(12.00 ft)		= 480 plf		
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)	- *	= 160 plf		
InteriorWallpL =	(9 psf)	(24.00 ft)		= 216 plf		
ExteriorWalloL =	(12 psf)	(9.00 ft)		- 108 plf		
StemwalloL =	(150 pcf)	(8.00 in)	(96.00 in)	= 800 plf		
FootingpL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		

P01)	(0.00 m)	(10.00 m)	100 pil	
	Max Vertical Load	to Worst Ca	se Pier	13.816 kips
	Max Unsupported	Ftg Span fro	m Arching Action	17.33 ft

SFA Design Group, LLC	PROJECT NO.	SHEET NO.	
STEC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021		
PROJECT		DATE	
Johnson Residence Residence Underpinning		11/2/2023	
SUBJECT		BY	
Design Loads		JB	

Tributary Width To Pier	=			= 7.25 ft		
Load Type	Design Load	Tributary	/ Length	Line Load		
RoofDL =	(15 psf)	(6.50 ft)		= 98 plf	Dead Load	8.924 kips
RoofSL =	(25 psf)	(6.50 ft)		= 163 plf	Floor Live Load	2.755 kips
1stFloordL =	(15 psf)	(5.50 ft)		= 83 plf	Roof Snow Load	1.178 kips
1stFloorLL =	(40 psf)	(5.50 ft)		= 220 plf	Controlling ASD Load C	ombination:
ConcFloorDL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf	D+0.75L+0.75S	
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWalloL =	(9 psf)	(9.50 ft)		= 86 plf		
ExteriorWalloL =	(12 psf)	(23.50 ft)		= 282 plf		
Stemwall _{DL} =	(150 pcf)	(8.00 in)	(42.00 in)	= 350 plf		
FootingDL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
		Max Vertical Lo	ad to Worst C	ase Pier		11.873 kips
		Max Unsupport	ed Ftg Span f	rom Arching Ac	tion	8.33 ft

STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS MFR23-021 PROJECT DATE Johnson Residence Residence Underpinning 11/2/2023 SUBJECT BY	SFA Design Group, LLC		
PROJECT DATE Johnson Residence Residence Underpinning 11/2/2023 SUBJECT BY	efa)		
SUBJECT BY		WIFR23-021	DATE
	Johnson Residence Residence Underpinning		11/2/2023
Design Loads JB	SUBJECT		BY
	Design Loads		JB

Worst Case Vertical Design Loads (Gridline 1)

Tributary Width To Pier =				= 5.00 ft		
Load Type	Design Load	Tributary	/ Length	Line Load		
Roofdl =	(15 psf)	(4.00 ft)		= 60 plf	Dead Load	7.837 kips
RoofSL =	(25 psf)	(4.00 ft)		= 100 plf	Floor Live Load	4.083 kips
2ndFloordL =	(15 psf)	(7.08 ft)		= 106 plf	Roof Snow Load	0.500 kips
2ndFloor∟∟ =	(40 psf)	(7.08 ft)		= 283 plf	Controlling ASD Load C	ombination:
1stFloordL =	(15 psf)	(7.08 ft)		= 106 plf	D+L	
1stFloor∟∟ =	(40 psf)	(7.08 ft)		= 283 plf		
Deckdl =	(12 psf)	(1.50 ft)		= 18 plf		
DeckLL =	(60 psf)	(1.50 ft)		= 90 plf		
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWallpL =	(9 psf)	(14.17 ft)		= 128 plf		
ExteriorWalloL =	(12 psf)	(18.00 ft)		= 216 plf		
StemwalloL =	(150 pcf)	(8.00 in)	(72.00 in)	= 600 plf		
FootingDL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
-	,	Max Vertical Lo	ad to Worst C	ase Pier		11.920 kips
		Max Unsupport	ed Ftg Span f	rom Arching Ac	tion	13.33 ft

SFA Design Group, LLC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. MFR23-021	SHEET NO.	
PROJECT	·	DATE	
Johnson Residence Residence Underpinning		11/2/2023	
SUBJECT		BY	
Design Loads		JB	

Tributary Width To Pier	r =			= 8.42 ft		
Load Type	Design Load	Tributary	<u>y Length</u>	Line Load		
Roofdl =	(15 psf)	(4.00 ft)		= 60 plf	Dead Load	11.290 kips
RoofSL =	(25 psf)	(4.00 ft)		= 100 plf	Floor Live Load	2.693 kips
2ndFloordl =	(15 psf)	(2.00 ft)		= 30 plf	Roof Snow Load	0.842 kips
2ndFloorLL =	(40 psf)	(2.00 ft)		= 80 plf	Controlling ASD Load C	ombination:
1stFloordL =	(15 psf)	(2.00 ft)		= 30 plf	D+L	
IstFloor∟∟ =	(40 psf)	(2.00 ft)		= 80 plf		
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
nteriorWall⊳∟ =	(9 psf)	(8.00 ft)		= 72 plf		
ExteriorWall⊳∟ =	(12 psf)	(18.00 ft)		= 216 plf		
StemwalloL =	(150 pcf)	(8.00 in)	(72.00 in)	= 600 plf		
Footing⊳∟ =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
	ī i	Max Vertical Lo	ad to Worst C	ase Pier		13.983 kips
	Ī	Max Unsupport	ed Ftg Span f	rom Arching Ac	tion	13.33 ft

SFA Design Group, LLC

	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

Worst Case Vertical Design Loads (Gridline (E) Wood Beam GL 5)

Load Type	Design Load	Tributary Length	Line Load		
Roofpl =	(15 psf)	(11.00 ft)	= 165 plf	Dead Load	0.483 kips
RoofSL =	(25 psf)	(11.00 ft)	= 275 plf	Floor Live Load	0.350 kips
2ndFloordL =	(15 psf)	(8.75 ft)	= 131 plf	Roof Snow Load	0.275 kips
2ndFloorLL =	(40 psf)	(8.75 ft)	= 350 plf	Controlling ASD Load C	ombination:
InteriorWalloL =	(9 psf)	(8.75 ft)	= 79 plf	D+0.75L+0.75S	
ExteriorWallpL =	(12 psf)	(9.00 ft)	= 108 plf		
		Max Vertical Load to Wors	t Case Pier		0.952 kips

General Beam Analysis

Project File: calcs.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06015057, Build:20.23.08.01 SFA ENGINEERING LLC **DESCRIPTION:** (E) Wood Bema GL 5 (For Load Generation Only)

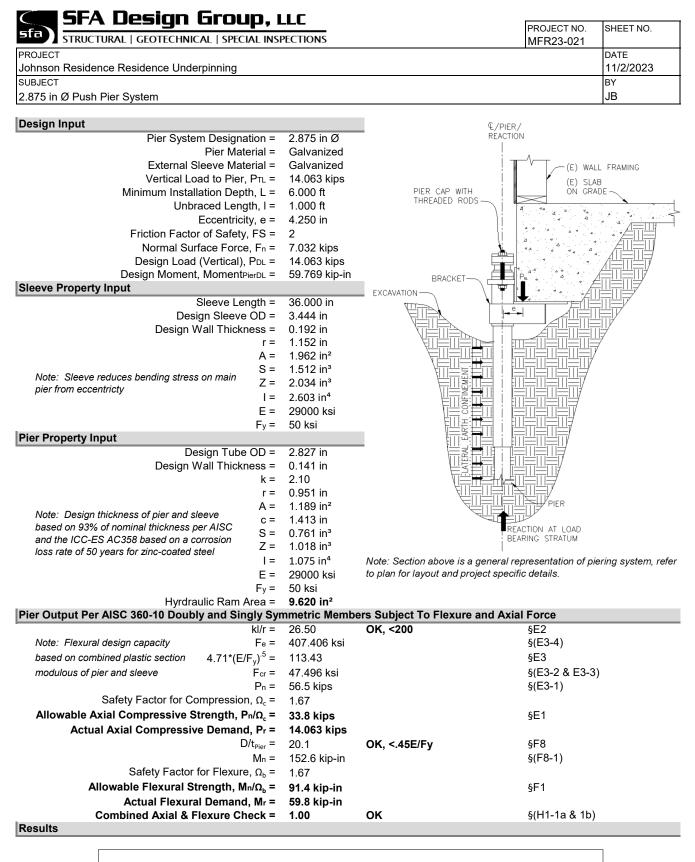
General Beam Properties

Elastic Modulus Span #1 Span #2	29,000.0 ksi Span Length = 1 Span Length =	13.417 ft 9.50 ft	Area = Area =	10.0 in^2 10.0 in^2	Moment of Inertia = Moment of Inertia =	100.0 in^4 100.0 in^4	
			D(0.75)	L(0.23) S(0.503)			
				¥.			
		D(0.2730) L(0.1750)	S(0.10)			
×	\$		▽	×	∀	×	
*				X		×	
				\sim		\sim)
							▶
	Span = 1	3 417 ft			Span = 9.50 ft		
4	opull is	0.117 10			opun oloo k		
				T			
Applied Loads				Service loads enter	red. Load Factors will be app	lied for calculation	ns.

Applied Loads

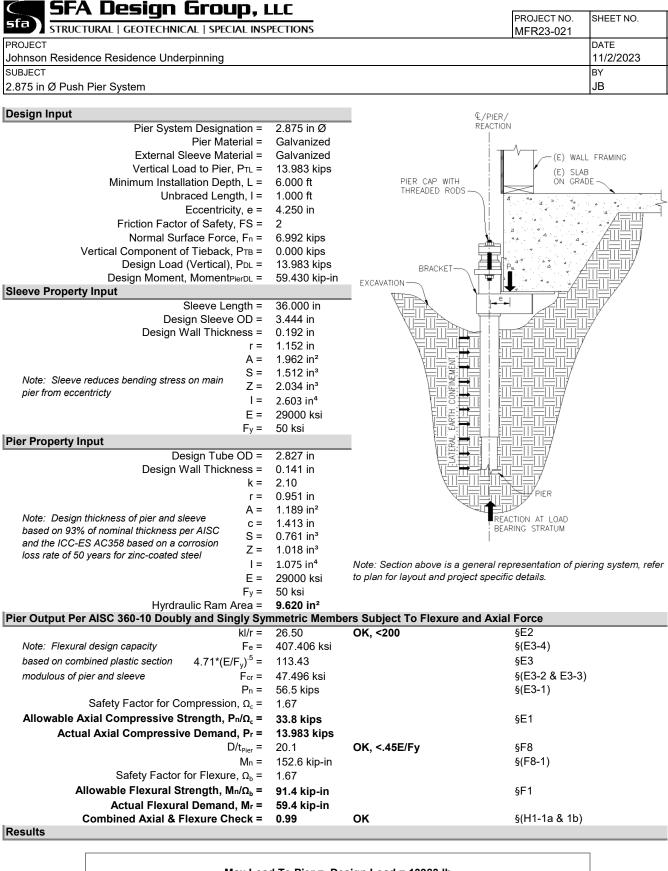
Loads on all spans...

Uniform Load on ALL spans : D = 0.2730, L = 0.1750, S = 0.10 k/ft, Tributary Width = 1.0 ft


Load(s) for Span Number 2

Point Load : D = 0.750, L = 0.230, S = 0.5030 k @ 0.0 ft

DESIGN SUMMARY


Maximum Bending = Load Combination	8.555 k-ft +D+0.750L+0.750S	Maximum Shear = Load Combination	3.853 k +D+0.750L+0.750S
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on span	13.417 ft	Location of maximum on span	13.417 ft
Maximum Deflection			
Max Downward Transient Deflection	0.024 in	6776	
Max Upward Transient Deflection	-0.002 in	70748	
Max Downward Total Deflection	0.065 in	2474	
Max Upward Total Deflection	-0.004 in	25834	

/ertical Reactions				Support notation : Far left is #′	Values in KIPS
Load Combination	Support 1	Support 2	Support 3		
Overall MAXimum Overall MINimum	2.577	8.329	1.376		
D Only	1.468	4.754	0.784		
+D+L	2.409	7.551	1.286		
+D+S	2.006	6.724	1.071		
+D+0.750L	2.174	6.852	1.161		
+D+0.750L+0.750S	2.577	8.329	1.376		
+0.60D	0.881	2.853	0.470		
L Only	0.941	2.797	0.502		
S Only	0.538	1.970	0.287		

Max Load To Pier = Design Load = 14063 lb 2.875" Diameter Pipe Pier with 0.165" Thick Wall 3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall Minimum 6'-0" Installation Depth And Minimum 3000 psi Installation Pressure

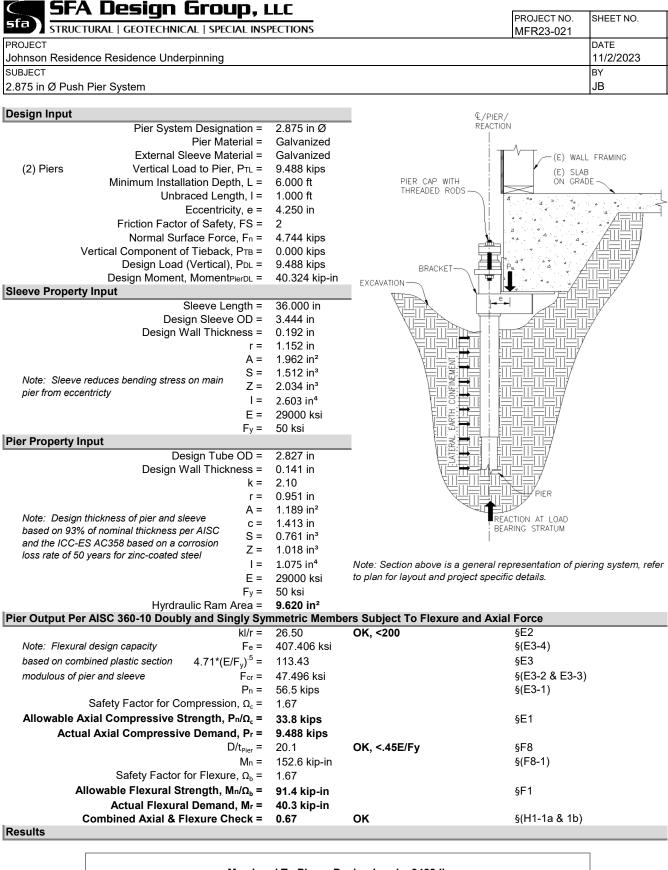
Minimum ¹/₄" Foundation Lift During Installation

Max Load To Pier = Design Load = 13983 lb

2.875" Diameter Pipe Pier with 0.165" Thick Wall

3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall

Minimum 6'-0" Installation Depth And Minimum 3000 psi Installation Pressure


Minimum ¼" Foundation Lift During Installation

SFA Design Group, LLC		
	PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

Worst Case Vertical Design Loads (Gridline GL 5 & C)

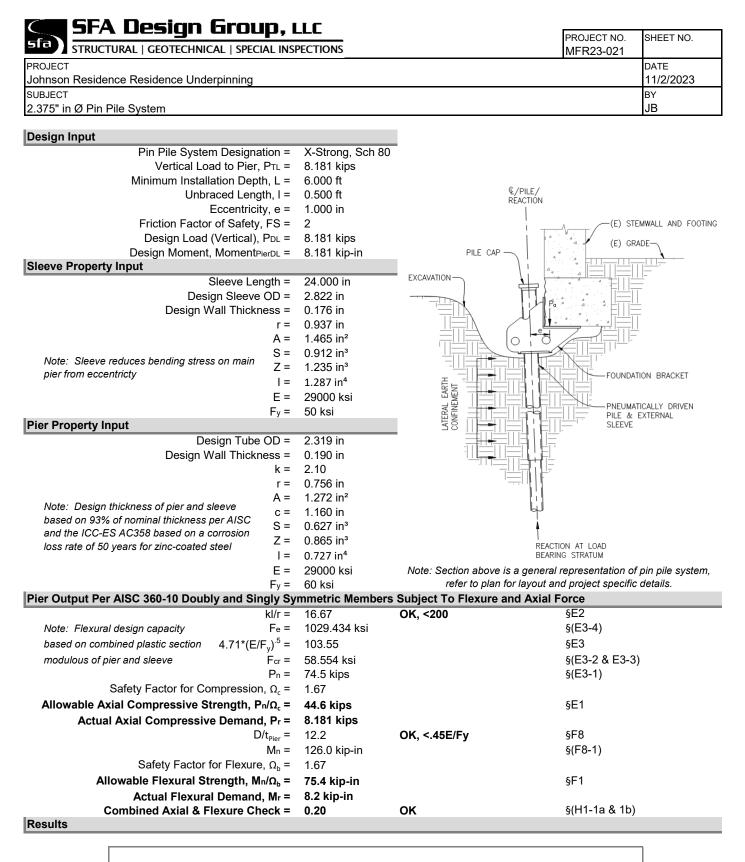
Tributary Width To Pier =				= 6.00 ft		
Load Type	Design Load	Tributary	/ Length	Line Load		
Roofdl =	(15 psf)	(4.00 ft)		= 60 plf	Dead Load	11.785 kips
RoofSL =	(25 psf)	(4.00 ft)		= 100 plf	Floor Live Load	6.611 kips
2ndFloordL =	(15 psf)	(2.00 ft)		= 30 plf	Roof Snow Load	2.977 kips
2ndFloor∟∟ =	(40 psf)	(2.00 ft)		= 80 plf	Controlling ASD Load Co	ombination:
1stFloordL =	(15 psf)	(2.00 ft)		= 30 plf	D+0.75L+0.75S	
1stFloor∟∟ =	(40 psf)	(2.00 ft)		= 80 plf		
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf		
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf		
InteriorWallpL =	(9 psf)	(6.00 ft)		= 54 plf		
ExteriorWalloL =	(12 psf)	(18.00 ft)		= 216 plf		
Stemwall _{DL} =	(150 pcf)	(8.00 in)	(72.00 in)	= 600 plf		
FootingDL =	(150 pcf)	(8.00 in)	(16.00 in)	= 133 plf		
Enerclac Point LoadDL =				= 3845 lb		
Enercalc Point LoadLL =				= 4691 lb		
Enercalc Point Loads∟ =				= 2377 lb		
	F					
		Max Vertical Lo	ad to Worst C	ase Pier		18.976 kips

Max Vertical Load to Worst Case Pier	18.976 kips
Max Unsupported Ftg Span from Arching Action	13.33 ft

Max Load To Pier = Design Load = 9488 lb

2.875" Diameter Pipe Pier with 0.165" Thick Wall

3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall

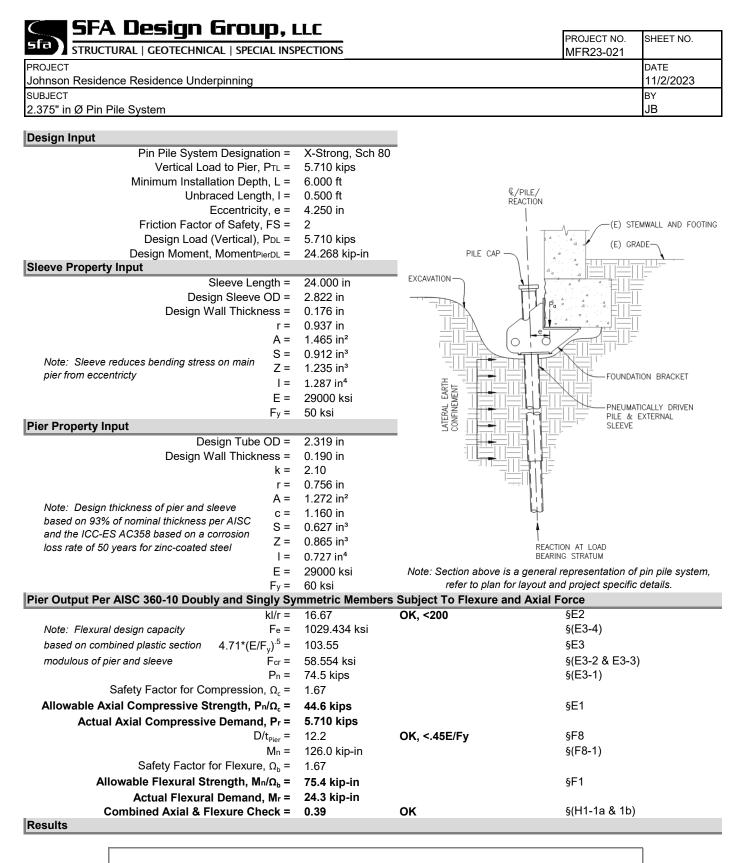

Minimum 6'-0" Installation Depth And Minimum 2000 psi Installation Pressure

Minimum ¹/₄" Foundation Lift During Installation

SFA Design Group, LLC	PROJECT NO.	SHEET NO.
STEC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Design Loads		JB

Tributary Width To Pier =				= 4.00 ft		
Load Type	Design Load	<u>Tributary</u>	<u>/ Length</u>	Line Load		
Conc. FootingpL =	(150 pcf)	(36.00 in)	(12.00 in)	= 1350 lb	Dead Load	11.040 kips
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf	Floor Live Load	11.800 kips
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf	Roof Snow Load	3.660 kips
Enerclac Point LoadDL =				= 8890 lb	Controlling ASD Load C	ombination:
Enercalc Point LoadLL =				= 11160 lb	D+L	
Enercalc Point LoadsL =				= 3660 lb		

Max Vertical Load to Worst Case Pier	22.840 kips
Max Unsupported Ftg Span from Arching Action	12.00 ft


Max Load To Pier = Design Load = 8181 lb

2.875" Diameter Pipe Pier with 0.165" Thick Wall

3.5" Diameterx48" Long Pipe Sleeve With 0.216" Thick Wall

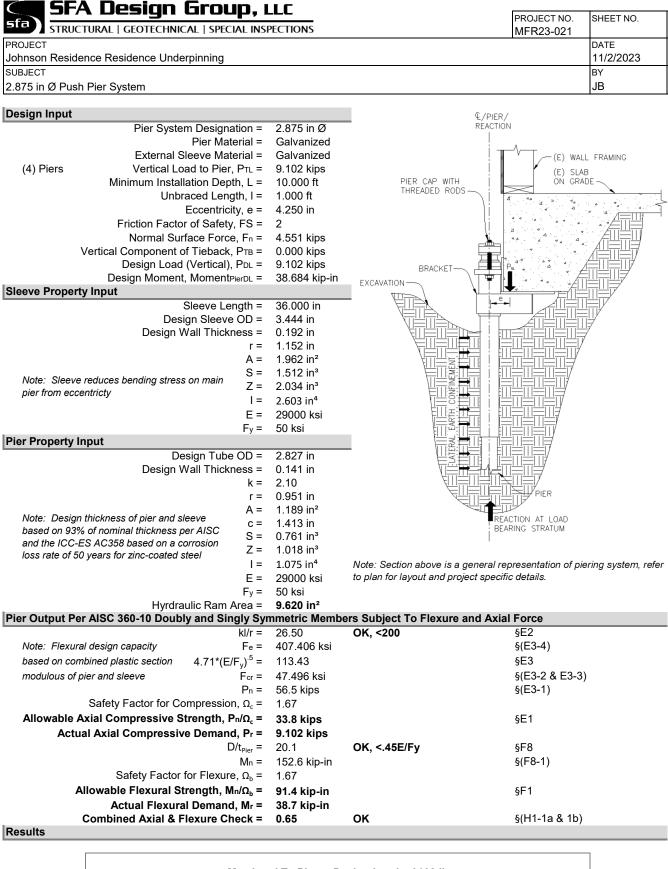
Minimum 6'-0" Installation Depth And Minimum 2600 psi Installation Pressure

Minimum 1/4" Foundation Lift During Installation

Max Load To Pier = Design Load = 5710 lb

2.875" Diameter Pipe Pier with 0.165" Thick Wall

3.5" Diameterx48" Long Pipe Sleeve With 0.216" Thick Wall


Minimum 6'-0" Installation Depth And Minimum 1800 psi Installation Pressure

Minimum ¹/₄" Foundation Lift During Installation

Sfa STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. MFR23-021	SHEET NO.
PROJECT		DATE 11/2/2023
Johnson Residence Residence Underpinning SUBJECT		BY
Design Loads		JB

Tributary Width To Pier =				= 4.00 ft		
Load Type	Design Load	Tributary	/ Length	Line Load		
Conc. Footingp∟ =	(150 pcf)	(36.00 in)	(12.00 in)	= 1350 lb	Dead Load	16.273 kips
ConcFloordL =	(150 pcf)	(4.00 in)	(48.00 in)	= 200 plf	Floor Live Load	20.135 kips
ConcFloorLL =	(40 psf)	(4.00 ft)		= 160 plf	Roof Snow Load	4.078 kips
Enerclac Point Load				= 14123 lb	Controlling ASD Load C	ombination:
Enercalc Point LoadLL =				= 19495 lb	D+L	
Enercalc Point LoadsL =				= 4078 lb		

Max Vertical Load to Worst Case Pier	36.408 kips
Max Unsupported Ftg Span from Arching Action	12.00 ft

Max Load To Pier = Design Load = 9102 lb 2.875" Diameter Pipe Pier with 0.165" Thick Wall

3.5"Diameterx36" Long Pipe Sleeve With 0.216"ThickWall

Minimum 10'-0" Installation Depth And Minimum 2000 psi Installation Pressure

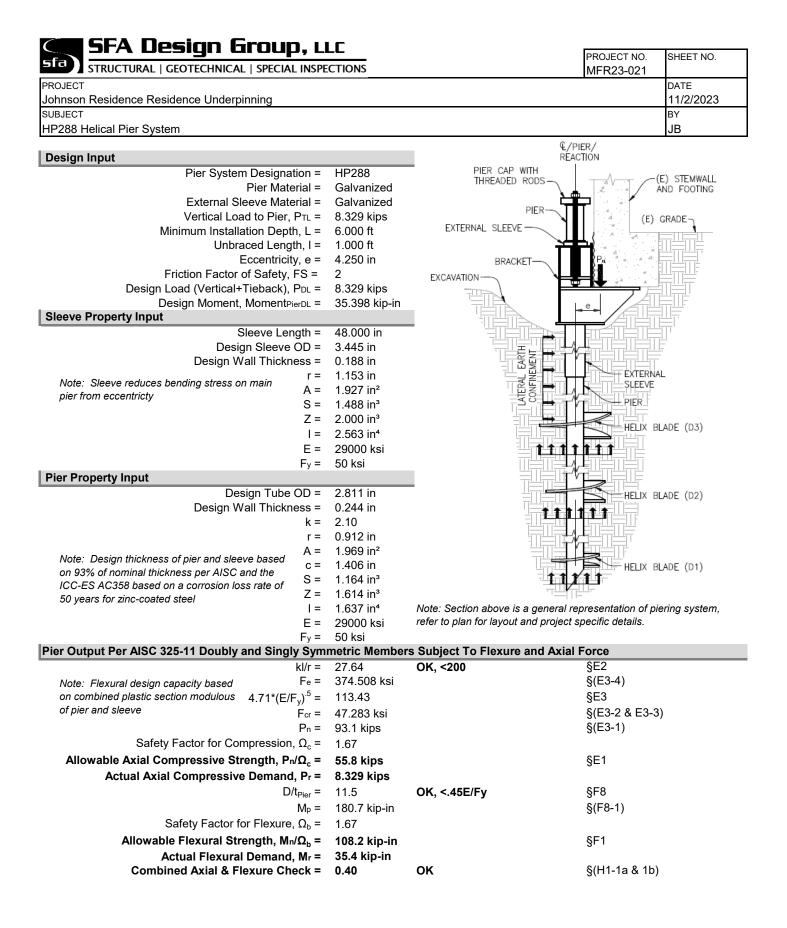
Minimum 1/4" Foundation Lift During Installation

SFA Design Group, LLC STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	PROJECT NO. MFR23-021	SHEET NO.
PROJECT Johnson Residence Residence Underpinning		DATE 11/2/2023
SUBJECT Design Loads		вү JB

Worst Case Vertical Design Loads (Gridline E)

Tributary Width To Pier =			= 1.00 ft		
Load Type	Design Load	Tributary Length	Line Load		
Roofdl =	(15 psf)	(7.00 ft)	= 105 plf	Dead Load	0.261 kips
RoofSL =	(25 psf)	(7.00 ft)	= 175 plf	Floor Live Load	0.080 kips
2ndFloorDL =	(15 psf)	(2.00 ft)	= 30 plf	Roof Snow Load	0.175 kips
2ndFloorLL =	(40 psf)	(2.00 ft)	= 80 plf	Controlling ASD Load C	ombination:
InteriorWallpL =	(9 psf)	(2.00 ft)	= 18 plf	D+0.75L+0.75S	
ExteriorWallpL =	(12 psf)	(9.00 ft)	= 108 plf		

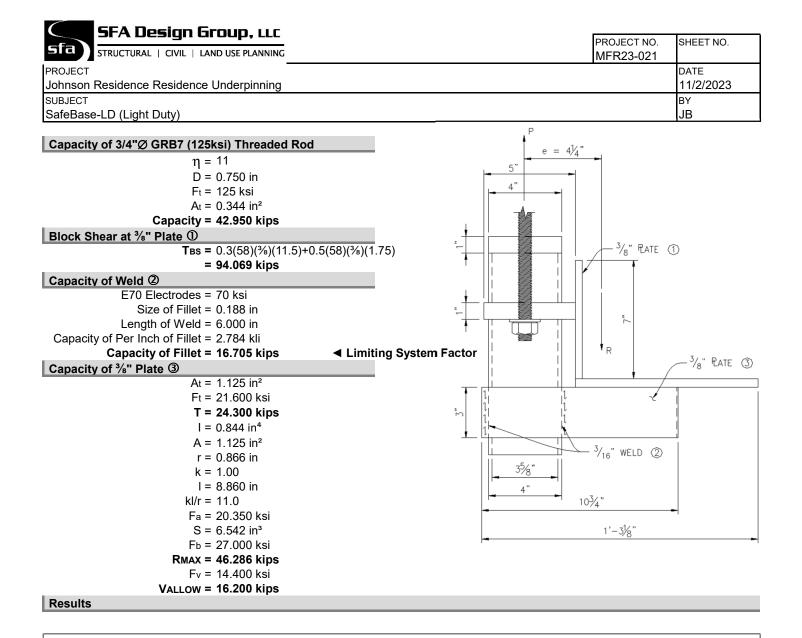
Max Vertical Load to Worst Case Pier	0.452 kips
Max Unsupported Ftg Span from Arching Action	12.00 ft


General Bean	n Analysis				Proj	ject File: calcs.ec6		
LIC# : KW-06015057, B	uild:20.23.08.01		SFA ENGINEERING	LLC	(c) ENERCALC INC 1983-2023			
DESCRIPTION:	(E) Wood Bema	d Bema GL E (For Load Generation Only)						
General Beam Pr	operties							
Elastic Modulus	29,000.0 ksi							
Span #1	Span Length =	5.750 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4		
×	*	D(0.2610) L(0.080) S ∲		\$	×		
-			Span = 5.750	īt				
Applied Loads				Service loads ente	red. Load Factors will be app	lied for calculations		
Loads on all spar	าร							

Uniform Load on ALL spans : D = 0.2610, L = 0.080, S = 0.1750 k/ft, Tributary Width = 1.0 ft

DESIGN SUMMARY

Maximum Bending = Load Combination	1.869 k-ft +D+0.750L+0.750S	Maximum Shear = Load Combination	1.30 k +D+0.750L+0.750S
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on span	2.875 ft	Location of maximum on span	0.000 ft
Maximum Deflection			
Max Downward Transient Deflection	0.001 in	46120	
Max Upward Transient Deflection	0.000 in	0	
Max Downward Total Deflection	0.004 in	17846	
Max Upward Total Deflection	0.000 in	3246993	
ertical Reactions		Support notation : Far left is #	Values in KIPS


Vertical Reactions			Support notation : Far left is #"	values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	1.300	1.300			
Overall MINimum					
D Only	0.750	0.750			
+D+L	0.980	0.980			
+D+S	1.254	1.254			
+D+0.750L	0.923	0.923			
+D+0.750L+0.750S	1.300	1.300			
+0.60D	0.450	0.450			
L Only	0.230	0.230			
S Only	0.503	0.503			
,					

Helix Properties and Capacity

Tionx Troportion and Suparity			
Fy _h =	50 ksi		
Fb _h = 0.75*Fy _h =	37.500 ksi		
D1 =	10 in	A1 = p*D1 ² /4 =	78.5 in²
	0.375 in	$S_1 = p D^{-1}/4 = S_1 = 1*t1^2/6 = 0$	0.023 in ³
t1 = Q1 = A1*w1 =	10.775 m 10.7 kips	S1 = 1 t1 /0 = W1 =	0.023 m² 0.136 ksi
	•		
D2 =	12 in	$A_2 = p^*D_2^2/4 - p^*(Tube OD)^2/4 =$	106.9 in ²
t2 =	0.375 in	$S_2 = 1*t_2^2/6 =$	0.023 in ³
$Q_2 = A_2^* W_2 =$	8.9 kips	W2 =	0.083 ksi
D3 =	0 in	$A_3 = p^*D_3^2/4 - p^*(Tube OD)^2/4 =$	0.0 in ²
t3 =	0.000 in	S3 = 1*t3 ² /6 =	0.000 in³
Q3 = A3*w3 =	0.0 kips	w3 =	0.000 ksi
ΣQ =	19.6 kips	OK	
Helix Weld to Pier Capacity			
E70 Electrodes =	70 ksi		
Size of Fillet Both Sides =	0.250 in		
Capacity of Fillet Both Sides =	7.424 kli		
R1 =	0.489 kli	Weld OK	
R2 =	0.383 kli	Weld OK	
R3 =	0.000 kli		
Soil - Individual Bearing Method - Cohesive	2.0		
Factor of Safety =	2.0		
Blow Count, N = $\sum_{n=1}^{\infty} A_{n+1} A_{n+1} A_{n+2}$	12		
$\sum A_h = A_1 + A_2 + A_3 =$	1.3 ft ²		
Cohesion, c =	1.500 ksf		
N _c =	9		
$Q_u = \sum A_h(cN_c) =$	17.384 kips		
Q _{a, compression/tension} = Q _u /FS =	8.692 kips	OK	
Soil - Individual Bearing Method - Non-Cohesive			
Factor of Safety, FS =	2.0		
γ =	110 pcf		
Ø =	29°		
Depth of Helix, D1 =	5.500 ft		
Depth of Helix, D2 =	3.000 ft		
Depth of Helix, D3 =	0.000 ft		
q'1 = γ*D1 =	605.0 psf		
q'2 = γ*D2 =	330.0 psf		
q'3 = γ*D3 =	0.0 psf		
$N_q = 1+0.56(12^*\phi)^{\phi/54} =$	13.98	(for Ø =29°)	
$Q1_u = A1(q'1N_q) =$	4.611 kips		
$Q_{2_{u}} = A_{2}(q'_{2}N_{q}) =$	3.423 kips		
$Q_{3_u} = A_3(q'_3N_q) =$	0.000 kips		
$Q_{a, \text{ compression/tension}} = \sum Q_u / FS =$	4.017 kips	NG	
Soil - Torque Correlation Method - Verification			
Factor of Safety, FS =	2.0		
Design Work Load, DL =	8.329 kips		
Emperical Torque Correleation Factor, Kt =	9.0 ft ⁻¹		
Final Installation Torque, T =	1851 lb-ft		
Ultimate Pile Capacity, Qu =	16.658 kips		
Allowable Pile Capacity, Qa =	8.329 kips	OK	
Results			

Max Load To Pier = Design Load = 8329 lb 3.5 in Diameter External Sleeve with 0.216 in Thick Wall 2.875 in Diameter Pier with 0.276 in Thick Wall 0.375" Thick 10/12" Helix With 0.25" Fillet Welds Each Side of Helix to Pier Minimum 6'-0" Installation Depth And Minimum 1900 lb-ft Installation Torque

Capacity of System (2 Sides) = 16.200(2)=32.400kips (Bracket Only)

SFA Design Group		s				PROJECT NO. MFR23-021	SHEET NO.
PROJECT		-				1011 1125-021	DATE
Johnson Residence Residence Underpinning							11/2/2023
SUBJECT							BY
Seismic Design Criteria							JB
ASCE 7-16 Chapters 11 & 13							JB
Soil Site Class =	D (Default)		Tab. 20.3-1, (D	efeult = D)			
Response Spectral Acc. (0.2 sec) $S_s =$	· · ·	= 1 427a	Figs. 22-1, 22-3		6		
Response Spectral Acc.(1.0 sec) $S_1 =$	0	Ű	Figs. 22-2, 22-4				
Site Coefficient F _a	0	-	Tab. 11.4-1	, 0,	•		
Site Coefficient F _v			Tab. 11.4-2				
Max Considered Earthquake Acc. S_{MS} =							
		= 1.712g	. ,				
Max Considered Earthquake Acc. S_{M1} =		= 0.894g	T Í				
@ 5% Damped Design S _{DS} =	2/3(S _{MS})	= 1.142g	(11.4-3)				
S _{D1} =	2/3(S _{M1})	= 0.596g	(11.4-4)				
Risk Category =	II, Standard		Tab. 1.5-1				
	Flexible Diap	hragm	§12.3.1				
Seismic Design Category for 0.1 sec			Tab. 11.6-1				
Seismic Design Category for 1.0 sec S1 < 0.75g			Tab. 11.6-2				
Since Ta < .8Ts (see below), SDC =	1	٦	§11.6 Exception of §1	1.6 door n	ot apply		
· ,	A. BEARING V				Tab. 12.2-1		
Seismic Force Resisting System (E-W)						ear resistance or	steel sheets
	A. BEARING V				Tab. 12.2-1		
Seismic Force Resisting System (N-S)	15. Light-framed	(wood) walls	sheathed with wood	structural par	nels rated for sh	ear resistance or	steel sheets
C _t =	0.02	x =	0.75		Tab. 12.8-2		
Structural height h _n =	24.0 ft	Structura	al Height Limit =	65.0 ft	Tab. 12.2-1		
C,,=	1.400	for S _{D1} of	0.596g		Tab. 12.8-1		
Approx Fundamental period, $T_a =$	$C_t(h_n)^x$	= 0.217	Ū		(12.8-7)		
	6 sec				. ,	through 22-17	7
Calculated T shall not exceed ≤		= 0.304					
	0.22 sec	- 0.304]					
		= 0 418	Exception of §1	1 6 does n	ot apply		
ls structure Regular & ≤ 5 stories ?	,	00	_,		§12.8.1.3		
······································			Max S	Sds ≤ 1.0g	3		
	<u>E-W</u>			<u>N-S</u>		Ţ	
Response Modification Coefficient R =	6.5			6.5			Tab. 12.2-1
Over Strength Factor $\Omega_0 =$	2.5			2.5			(foot note g)
Importance factor I _e =	1.00			1.00			Tab. 11.5.1
Seismic Base Shear V =	C _s W			C _s W			(12.8-1)
C _s =	S _{DS}	= 0.176		S _{DS}	= 0.176		(12.8-2)
	R/I _e			R/I _e			
or need not to exceed, C_s =	S _{D1}	= 0.423		S _{D1}	= 0.423	For $T \leq T_L$	(12.8-3)
	(R/I _e)T			(R/I _e)T			-
or C _s =		N/A		S _{D1} T _L	N/A	For T > T_L	(12.8-4)
0. Oş	T ² (R/I _e)			T ² (R/I _e)		· · · · · · · · · · · · · · · · · · ·	,/
Min C _s =	0.5S₁l _e /R	N/A		0.5S₁I _e /R	N/A	For $S_1 \ge 0.6g$	1 (12 8-6)
10111 O _s =	0.001ie/10	11/7		0.0011e/1		0, 0 ₁ = 0.00	<i>(12.0-0)</i>

0.176

0.176 W

Use C_s =

Design base shear V =

0.176

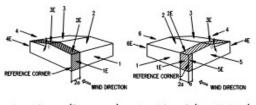
0.176 W

SFA Design Group, LLC sta structural geotechnical special inspections	PROJECT NO. MFR23-021	SHEET NO.
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Wind Design Criteria		JB

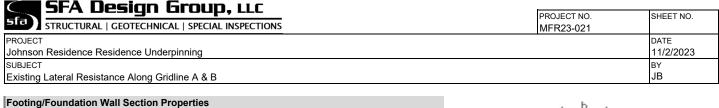
INPUT DATA Exposure category (26.7.3) Basic wind speed (26.5.1) Topographic factor (26.8 & Table 26.8-1)	V = 98 K _{zt} = 1.00	mph Flat	
Building height to eave	h _e = 18 ft		<u>ح</u>
Building height to ridge Building length Building width Ground Elevation Above Sea Level	$h_r = 24 \text{ ft}$ L = 51 ft B = 39 ft E = 332 ft		

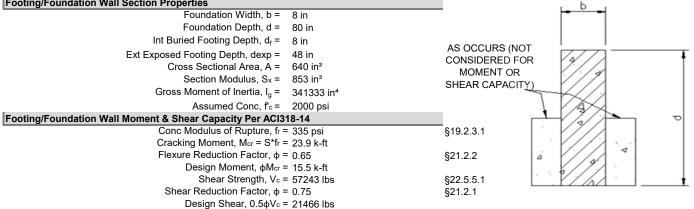
qn = 0.0	00256 Kh Kzt Kd Ke V^2 = 14.63 psf					
where:	qh = velocity pressure at mean roof height, h. (Eq. 26.10-1 & Eq	. 30.3-1)				
	Kh = velocity pressure exposure coefficient evaluated at height,	h, (Tab. 26.10-1)		=	0.700	
	Kd = wind directionality factor. (Tab. 26.6-1, for building)			=	0.85	
	K _e = ground elevation factor. (Tab. 26.9-1)			=	1.00	
	h = mean roof height			=	21.00	ft
	,	<	60 ft, \$	Satisfactory	(AS	CE 7-10 26.2.1)
n pressures	s for MWFRS					
p = q _h [(G C _{pf})-(G C _{pi})]	p _{min} =	16	psf for wall area (28	.3.4)	
where:	p = pressure in appropriate zone. (Eq. 28.3-1).	p _{min} =	8	psf for roof area (28	.3.4)	
	G Cp f = product of gust effect factor and external pressure coef	ficient, see table b	below.	(Fig. 28.3-1)		
	G Cp i = product of gust effect factor and internal pressure coeff	,		(U)		

a = width of edge strips, Fig 28.3-1, note 9, MAX[MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] =

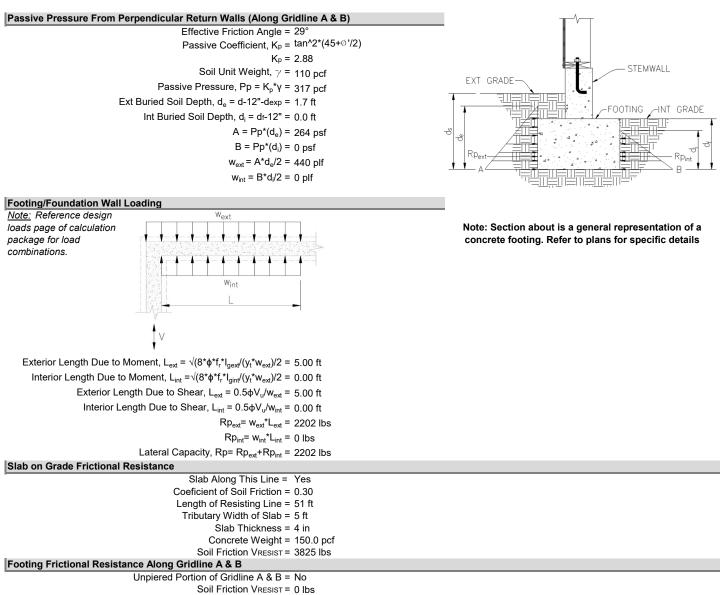

3.90 ft

Net Pressures (psf), Load Case A

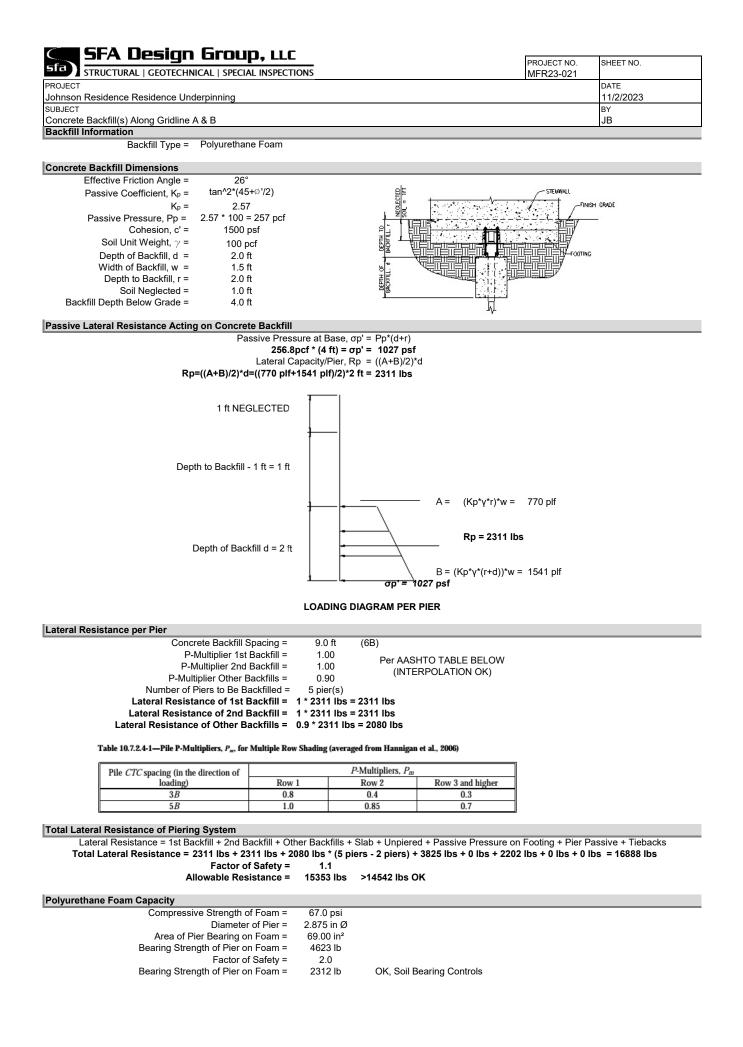

Wind Analysis for Low-rise Building, Based on ASCE 7-16


	Roof an	gleθ=	17.10
Surface	0.0	Net Pre	essure with
	G C _{p f}	$(+GC_{pi})$	(-GC _{pi})
1	0.50	10.02	4.75
2	-0.69	-7.46	-12.73
3	-0.46	-4.08	-9.34
4	-0.40	-3.26	-8.53
1E	0.76	13.80	8.53
2E	-1.07	-13.02	-18.29
3E	-0.68	-7.29	-12.56
4E	-0.60	-6.14	-11.40

	Roof an	gleθ=	17.10
Surface	~ ~	Net Press	sure with
	G C _{p f}	$(+GC_{pi})$	$(-GC_{pi})$
1	-0.45	-3.95	-9.22
2	-0.69	-7.46	-12.73
3	-0.37	-2.78	-8.05
4	-0.45	-3.95	-9.22
5	0.40	8.48	3.22
6	-0.29	-1.61	-6.88
1E	-0.48	-4.39	-9.66
2E	-1.07	-13.02	-18.29
3E	-0.53	-5.12	-10.39
4E	-0.48	-4.39	-9.66
5E 6E	0.61 -0.43	11.56 -3.66	6.29 -8.92
θE	-0.43	-3.66	-0.92

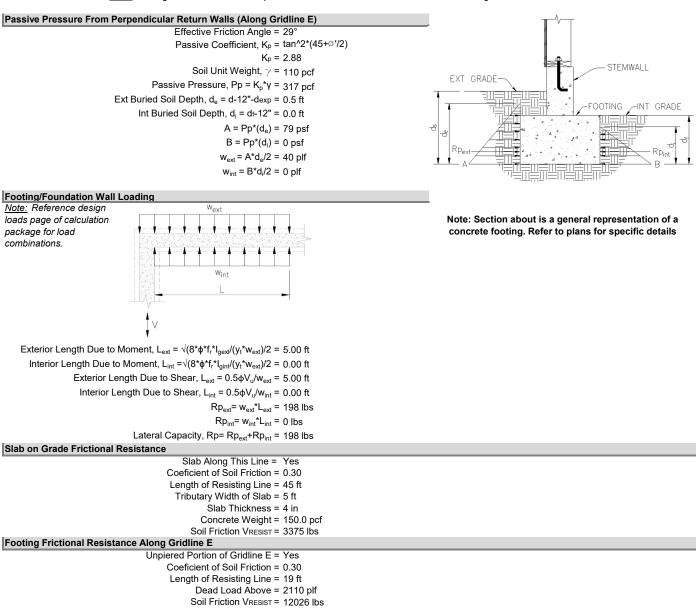


Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Cases

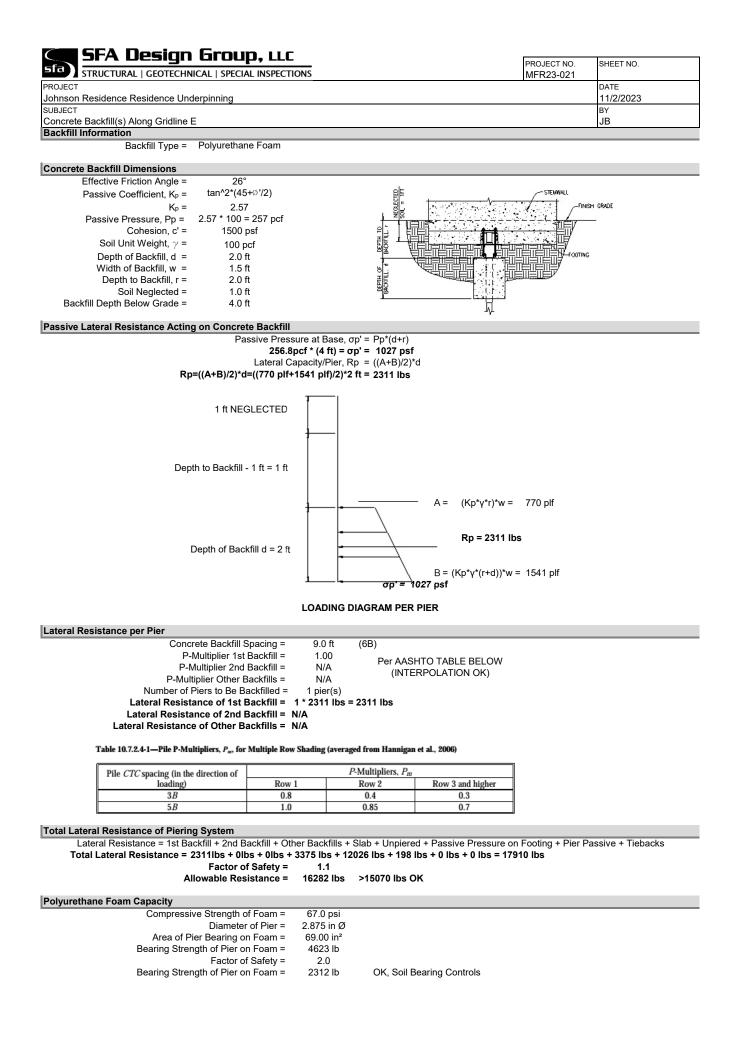


Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.

A & B ine A & B ine A & B (40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear VwiND = hear VwiND = + Vsf + Vsa =	3001 lbs	(4.00 ft) (14.00 ft) Zone (5+4 Tributary Wid Tributary Heig Seismic Contro	= 6) = th = ht = a =		PROJECT NO. MFR23-021	SHEET NO.
A & B ine A & B (40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear Vwind = hear Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		11/2/2023 BY
A & B ine A & B (40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear Vwind = hear Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		BY
ine A & B (40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft near Vwind = near Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		
ine A & B (40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft near Vwind = near Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		JB
(40 pcf) (40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		
(40 pcf) & B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear Vwind = hear Vwind =	(6.00 ft) 5002 lbs 3001 lbs	(14.00 ft) Zone (5+(Tributary Wid Tributary Heigi	= 6) = th = ht = a =	1680 lb 16.0 psf 10.10 ft 24.00 ft		
& B ongitudinal 16.0 psf 3.90 ft 18.00 ft hear Vwind = hear Vwind =	5002 lbs 3001 lbs	Zone (5+0 Tributary Wid Tributary Heig	6) = th = ht = a =	16.0 psf 10.10 ft 24.00 ft		
ongitudinal 16.0 psf 3.90 ft 18.00 ft near Vwind = near Vwind =	3001 lbs	Tributary Wid Tributary Heig	th = ht = a =	10.10 ft 24.00 ft		
ongitudinal 16.0 psf 3.90 ft 18.00 ft near Vwind = near Vwind =	3001 lbs	Tributary Wid Tributary Heig	th = ht = a =	10.10 ft 24.00 ft		
3.90 ft 18.00 ft hear Vwind = hear Vwind =	3001 lbs	Tributary Wid Tributary Heig	th = ht = a =	10.10 ft 24.00 ft		
18.00 ft near Vwind = near Vwind =	3001 lbs	Tributary Heig	ht = a =	24.00 ft		
near Vwind = near Vwind =	3001 lbs		a =			
ear Vwind =	3001 lbs	Seismic Contro		3.90 ft		
ear Vwind =	3001 lbs	Seismic Contro	ols			
		Seismic Contro	ols			
34						
	× 2	6 2 ² 3 ×				
REFERENCE CORNER						
Load Case A	(Transverse)	Load Case B (Longi	tudinal)			
	Basic Lo	ad Cases				
A & B						
· /		•				
			-	I rib Length =	51 ft	
. ,						
	(04.00 :)					
· ,	()	•				
· · ·	()					
(6.00 ft)	(14.00 ft)	= 231 lb				
15631 lbs						
14542 lbs		ontrols				
	A & B (16.00 ft) (14.00 ft) (14.00 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft) 15631 lbs 10942 lbs	A & B (16.00 ft) (14.00 ft) (14.00 ft) (13.50 ft) (8.00 in) (81.00 in) (16.00 in) (8.00 in) (13.50 ft) (28.00 ft) (6.00 ft) (14.00 ft) 15631 lbs 10942 lbs	Load Case A (Transverse) Load Case B (Longi Basic Load Cases A & B (16.00 ft) = 240 plf (14.00 ft) = 210 plf (14.00 ft) = 210 plf (13.50 ft) = 162 plf (8.00 in) (81.00 in) = 675 plf (16.00 in) (8.00 in) = 133 plf (13.50 ft) (28.00 ft) = 4536 lb (6.00 ft) (14.00 ft) = 231 lb 15631 lbs 10942 lbs	Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Cases $\mathbf{A} \& \mathbf{B}$ (16.00 ft) = 240 plf (14.00 ft) = 210 plf (14.00 ft) = 210 plf (13.50 ft) = 162 plf (8.00 in) (81.00 in) = 675 plf (13.50 ft) (28.00 ft) = 4536 lb (6.00 ft) (14.00 ft) = 231 lb 15631 lbs 10942 lbs 100	Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Cases A & B (16.00 ft) = 240 plf Base shear = (14.00 ft) = 210 plf Trib Length = (14.00 ft) = 210 plf Trib Length = (14.00 ft) = 162 plf (13.50 ft) (13.50 ft) (13.50 ft) (8.00 in) = 675 plf (13.50 ft) (28.00 ft) (13.50 ft) (28.00 ft) = 4536 lb (6.00 ft) (14.00 ft) = 231 lb 15631 lbs 10942 lbs 104 105 105 105	Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Cases A & B (16.00 ft) = 240 plf Base shear = 0.176 W (14.00 ft) = 210 plf Trib Length = 51 ft (14.00 ft) = 210 plf Trib Length = 51 ft (14.00 ft) = 162 plf 8.00 in) = 675 plf (16.00 in) (81.00 in) = 675 plf 16.00 in) (8.00 in) = 133 plf (13.50 ft) (28.00 ft) = 4536 lb 6.00 ft) (14.00 ft) = 231 lb 15631 lbs 10942 lbs 10942 lbs 1000000000000000000000000000000000000


Worst Case Lateral Load Along Gridline A & B = 14542 lbs Total Available Lateral Resistance Along Gridline A & B = 5479 lbs Additional Lateral Resistance of 9063 lbs Required

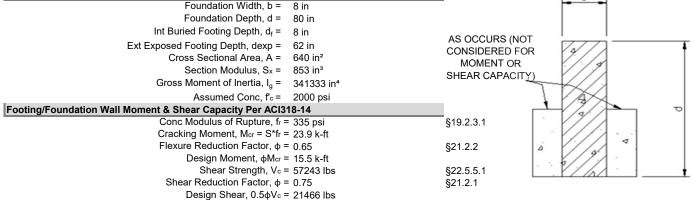
SFA Design Group, LLC		PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS		MFR23-021	
ROJECT		· · · · ·	DATE
ohnson Residence Residence Underpinning			11/2/2023
UBJECT			BY
Existing Lateral Resistance Along Gridline E			JB
ooting/Foundation Wall Section Properties		, b	
Foundation Width, b =	8 in		
Foundation Depth, d =	80 in		
Int Buried Footing Depth, d _f =	8 in		
Ext Exposed Footing Depth, dexp =	62 in	AS OCCURS (NOT	
Cross Sectional Area, A =	640 in²	CONSIDERED FOR	
Section Modulus, S _x =	853 in ³		7
Gross Moment of Inertia, I_{α} =	341333 in⁴	SHEAR CAPACITY)	
Assumed Conc, f [*] _c =			\prec
ooting/Foundation Wall Moment & Shear Capacity Per ACI3			
Conc Modulus of Rupture, fr =	= 335 psi	§19.2.3.1	
Cracking Moment, Mcr = S*fr =	= 23.9 k-ft		
Flexure Reduction Factor, φ =	= 0.65	§21.2.2 a	
Design Moment, φMcr =	= 15.5 k-ft		″./ ·
Shear Strength, V₀ =	= 57243 lbs	§22.5.5.1	
Shear Reduction Factor, φ =	= 0.75	§21.2.1	


Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.

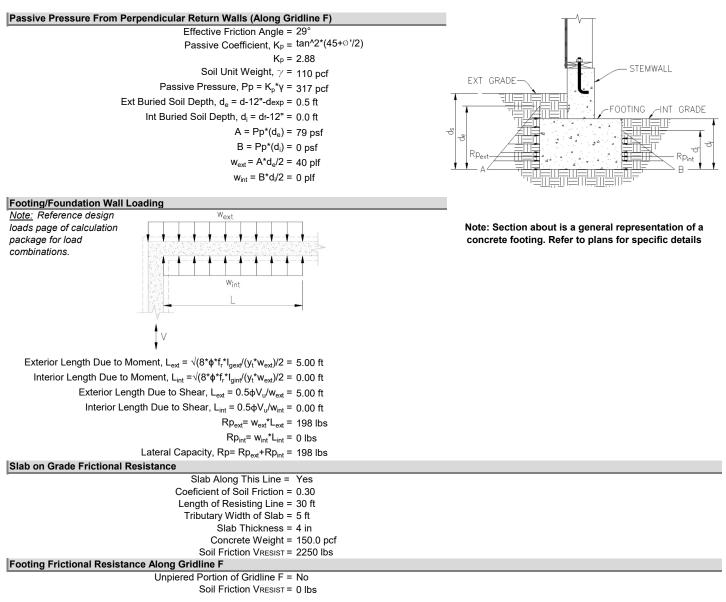
Design Shear, 0.5 oVc = 21466 lbs

	i Group	LLC			-	-
sfa structural geotechn					PROJECT NO. MFR23-021	SHEET NO.
PROJECT					INIF K23-02 I	DATE
Johnson Residence Residence Un	derpinnina					11/2/2023
SUBJECT	aorphining					BY
Lateral Design Loads Along Gridlin	еE					JB
5 5-						
_ateral Earth Pressure Along Gri	dline E					
Soil Load to Foundation, Vsf =	(40 pcf)	(6.00 ft)	(4.00 ft)	= 1920 lb		
Soil Load to Floor Above, Vsa =	(40 pcf)	(6.00 ft)	(19.50 ft)	= 2340 lb		
Vind Base Shear Along Gridline						
Loading Direction:	Longitudinal					
End Zone $(5E+6E) =$	16.0 psf		Zone (5+6			
Tributary Width =	3.90 ft		Tributary Width			
Tributary Height =	18.00 ft		Tributary Heigh			
			é	a = 3.90 ft		
	shear Vwind =	7114 lbs				
ASD(60%) base		4268 lbs				
VWINI	D + Vsf + Vsa =	8528 lbs	Seismic Contro	IS		
	RETERENCE CORNER			s s		
		120 WIND DIRECTION	20 6 WHO	DIRECTION		
		*20 WIND DIRECTION	20 8 🦘 WHO			
	Load Case A	(Transverse)	23 K K www.			
	Load Case A	*20 WIND DIRECTION	23 K K www.			
	Load Case A	(Transverse)	బార్ నార్గా Load Case B (Longity ad Cases	udinal)	- 0.470 \\	
RoofpL = (15 psf)	Load Case A ne E (19.50 ft)	(Transverse)	Load Case B (Longith ad Cases = 293 plf	udind) Base shear		
Roofp∟ = (15 psf) st Floorp∟ = (15 psf)	Load Case A ne E (19.50 ft) (19.50 ft)	(Transverse)	Load Case B (Longith ad Cases = 293 plf = 293 plf	udinal)		_
RoofpL = (15 psf) st FloorpL = (15 psf) 2nd FloorpL = (15 psf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft)	(Transverse)	Load Case B (Longith ad Cases = 293 plf = 293 plf = 293 plf = 293 plf	udind) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) 2nd FloorbL = (15 psf) WallbL = (12 psf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft)	(Transverse) Basic Loo	Load Case B (Longith ad Cases = 293 plf = 293 plf = 293 plf = 293 plf = 162 plf	udind) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) 2nd FloorbL = (15 psf) VallbL = (12 psf) StemwallbL = (150 pcf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (13.50 ft) (8.00 in)	(Transverse) <u>Basic Loc</u> (72.00 in)	Load Case B (Longith ad Cases = 293 plf = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf	udind) Base shear		
RoofDL = (15 psf) Ist FloorDL = (15 psf) 2nd FloorDL = (15 psf) WallDL = (12 psf) StemwallDL = (150 pcf) FootingDL = (150 pcf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (13.50 ft) (8.00 in) (16.00 in)	(Transverse) <u>Basic Lor</u> (72.00 in) (8.00 in)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf	udind) Base shear		
RoofpL = (15 psf) st FloorpL = (15 psf) nd FloorpL = (15 psf) VallpL = (12 psf) GternwallpL = (150 pcf) FootingpL = (150 pcf) PerpWallspL = (12 psf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft)	(72.00 in) (39.00 ft)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf = 6318 lb	udind) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) Ind FloorbL = (15 psf) VallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf) PerpWallsbL = (12 psf)	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (13.50 ft) (8.00 in) (16.00 in)	(Transverse) <u>Basic Lor</u> (72.00 in) (8.00 in)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf	udind) Base shear		
$Roof_{DL} =$ (15 psf)Ist Floor_{DL} =(15 psf)Ist Floor_{DL} =(15 psf)Pand Floor_{DL} =(12 psf)Vall_{DL} =(150 pcf)Footing_{DL} =(150 pcf)PerpWall_{SDL} =(12 psf)Soil_Seismic_EL =Soil_Seismic_EL =	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft)	(72.00 in) (39.00 ft)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf = 6318 lb	udind) Base shear		
1st FloorDL = (15 psf) 2nd FloorDL = (15 psf) 2nd FloorDL = (12 psf) WallDL = (150 pcf) StemwallDL = (150 pcf) PerpWallSDL = (12 psf) SoilSeismicEL =Design base shear VSEISMIC =	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft) 15443 lbs	(72.00 in) (39.00 ft)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf = 6318 lb	udind) Base shear		
$Roof_{DL} =$ (15 psf)Ist Floor_{DL} =(15 psf)Ist Floor_{DL} =(15 psf)Pand Floor_{DL} =(12 psf)Vall_{DL} =(150 pcf)Footing_{DL} =(150 pcf)PerpWall_{SDL} =(12 psf)Soil_Seismic_EL =	Load Case A ne E (19.50 ft) (19.50 ft) (19.50 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft)	(72.00 in) (39.00 ft)	Load Case B (Longitude ad Cases = 293 plf = 293 plf = 293 plf = 162 plf = 600 plf = 133 plf = 6318 lb = 322 lb	udind) Base shear		

Total Available Lateral Resistance Along Gridline E = 14181 lbs Additional Lateral Resistance of 889 lbs Required

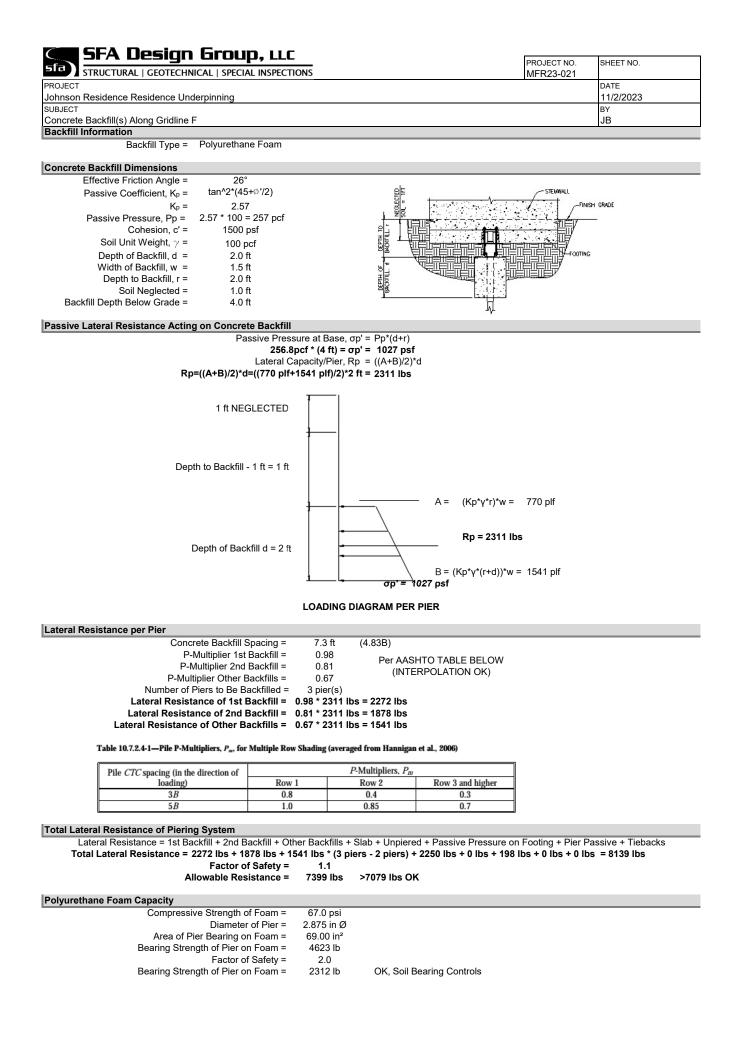


SFA Design Group, LLC


	FROJECT NO.	SHELTING.
STRUCTURAL GEOTECHNICAL SPECIAL INSPECTIONS	MFR23-021	
PROJECT		DATE
Johnson Residence Residence Underpinning		11/2/2023
SUBJECT		BY
Existing Lateral Resistance Along Gridline F		JB
Footing/Foundation Wall Section Properties	. b .	
Forwardstien Width h = 0 in		

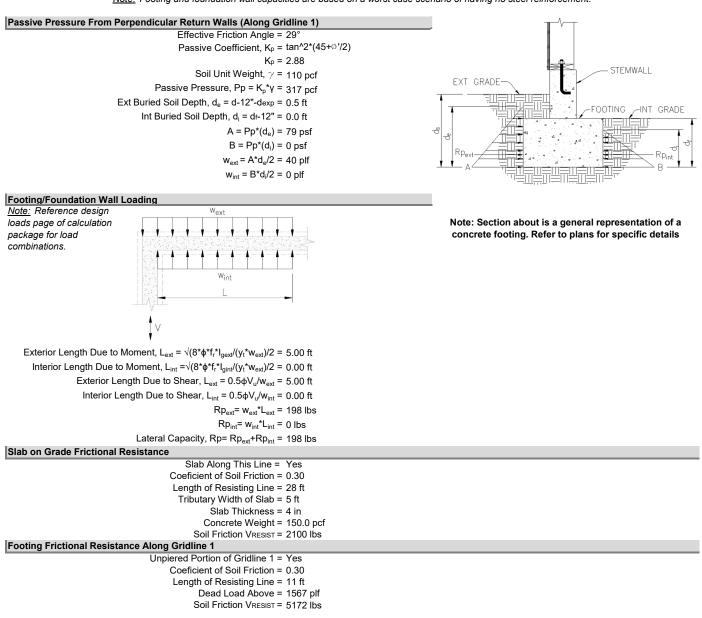
DRO JECT NO

SHEET NO

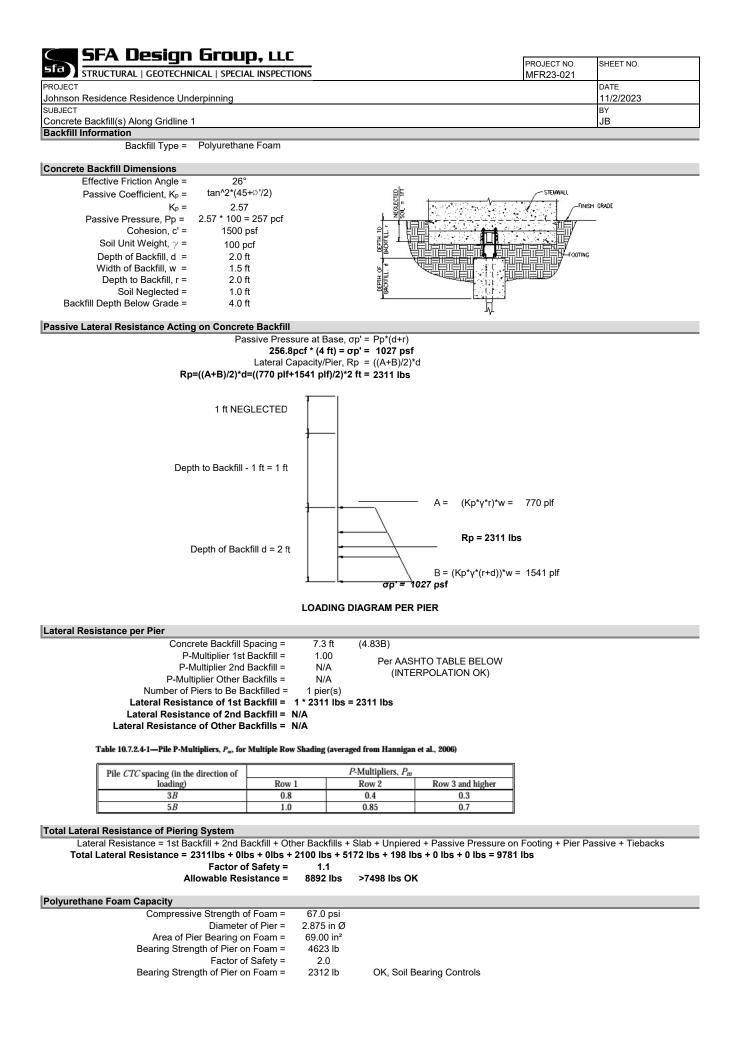


Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.

🤇 SFA Design	Group	LLC				
sfa structural geotechn	-				PROJECT NO. MFR23-021	SHEET NO.
PROJECT					IVIERZJ-UZ I	DATE
Johnson Residence Residence Und	lerninning					11/2/2023
SUBJECT	loipinning					BY
Lateral Design Loads Along Gridling	∍ F					JB
Eatoral Boolgn Eoado Along Onaina	51					60
Lateral Earth Pressure Along Grid	dline F					
Soil Load to Foundation, Vsf =	(40 pcf)	(6.00 ft)	(4.00 ft)	= 1920 lb		
Soil Load to Floor Above, Vsa =	(40 pcf)	(6.00 ft)	(5.50 ft)	= 660 lb		
Wind Base Shear Along Gridline	F					
	Longitudinal					
End Zone (5E+6E) =	16.0 psf		Zone (5+6) :	= 16.0 psf		
Tributary Width =	3.90 ft		Tributary Width :			
Tributary Height =	18.00 ft		Tributary Height :			
			a:			
Design base s	shear Vwind =	1123 lbs	-			
ASD(60%) base s		674 lbs				
) + Vsf + Vsa =	3254 lbs	Seismic Controls	;		
	SE 3	2	* 2E 3			
	-	<u>x</u>	·]] .			
		the of	-	E.		
				-5		
	REFERENCE CORNER	120 Bar	EFERENCE CORNER			
		WIND DIRECTION	20 K 🦄 WIND DIRS			
	Load Case A	•	Load Case B (Longitud	inal)		
		Basic Loo	ad Cases			
Seismic Base Shear Along Gridli	ne F					
Roof _{DL} = (15 psf)	(7.50 ft)		= 113 plf	Base shear		
lst Floor⊳∟ = (15 psf)	(5.50 ft)		= 83 plf	Trib Length	= 30 ft	
2nd Floor _{DL} = (15 psf)	(5.50 ft)		= 83 plf			
Nallo∟ = (12 psf)	(13.50 ft)		= 162 plf			
Stemwall _{DL} = (150 pcf)	(8.00 in)	(72.00 in)	= 600 plf			
Footingp∟ = (150 pcf)	(16.00 in)	(8.00 in)	= 133 plf			
PerpWalls⊳∟ = (12 psf)	(13.50 ft)	(5.50 ft)	= 891 lb			
SoilSeismicEL =	(6.00 ft)	(5.50 ft)	= 91 lb			
	0407 "					
Design base shear VSEISMIC =	6427 lbs					
ASD(70%) base shear Vseis =	4499 lbs					
VSEIS + Vsf + Vsa =	7079 lbs		ontrols			
	Worst Cor		d Along Gridline F =	7070 lbc		
			tance Along Gridline			


Total Available Lateral Resistance Along Gridline F = 2226 lbs Additional Lateral Resistance of 4853 lbs Required

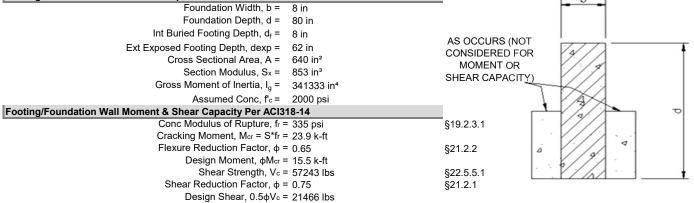
Froutiend From Structural GEOTECHNICAL SPECIAL INSPECTIONS PROJECT NO. Johnson Residence Residence Underpinning SUBJECT Existing Lateral Resistance Along Gridline 1 Foundation Width, b = 8 in Footing/Foundation Wall Section Properties Foundation Depth, d = 80 in Int Buried Footing Depth, dr = 8 in AS OCCURS (NOT Cross Sectional Area, A = 640 in ² MOMENT OR Section Modulus, Sx = 853 in ³ SHEAR CAPACITY) Gross Moment of Inertia, Ig = 341333 in ⁴ Assumed Conc, Fo= 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Struct Cacking Moment, Mar = S'fr = 23.9 k-ft Cracking Moment, Mar = S'fr = 23.9 k-ft Struct and the structure of	SHEET NO.
Johnson Residence Residence Underpinning SUBJECT Existing Lateral Resistance Along Gridline 1 Footing/Foundation Wall Section Properties Foundation Depth, d = 8 in Foundation Depth, dr = 8 in Int Buried Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, S _x = 853 in ³ Gross Moment of Inertia, I _g = 341333 in ⁴ Assumed Conc, fc = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mar = S*fr = 23.9 k-ft Flexure Reduction Factor, \$\$ 0.65 Design Moment, \$\$ Mar = 15.5 k-ft	GHEET NO.
SUBJECT Existing Lateral Resistance Along Gridline 1 Footing/Foundation Wall Section Properties Foundation Depth, d = 8 in Foundation Depth, d = 8 in Int Buried Footing Depth, dr = 8 in Ext Exposed Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, lg = 341333 in ⁴ Assumed Conc, fc = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mor = S ⁺ fr = 23.9 k-ft Flexure Reduction Factor, $\phi = 0.65$ Design Moment, $\phi Mor = 15.5$ k-ft	DATE
Existing Lateral Resistance Along Gridline 1 Footing/Foundation Wall Section Properties Foundation Depth, d = 8 in Foundation Depth, d = 80 in Int Buried Footing Depth, d _r = 8 in Ext Exposed Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, I _g = 341333 in ⁴ Assumed Conc, f _c = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, f _r = 335 psi Cracking Moment, M _{or} = S*fr = 23.9 k-ft Flexure Reduction Factor, ϕ = 0.65 Design Moment, ϕ Mor = 15.5 k-ft	11/2/2023
Footing/Foundation Wall Section Properties Foundation Depth, d = 8 in Foundation Depth, d = 80 in Int Buried Footing Depth, dr = 8 in Ext Exposed Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, Ig = 341333 in ⁴ Assumed Conc, fc = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mar = S*fr = 23,9 k-ft Flexure Reduction Factor, φ = 0.65 Design Moment, ΦMar = 15,5 k-ft	BY
Foundation Width, b = 8 in Foundation Depth, d = 80 in Int Buried Footing Depth, dep = 62 in Cross Sectional Area, A = 640 in²AS OCCURS (NOT CONSIDERED FOR MOMENT OR SHEAR CAPACITY)Ext Exposed Footing Depth, dexp = 62 in Cross Section Modulus, Sx = 853 in³ Gross Moment of Inertia, Ig = 341333 in³ Assumed Conc, fr = 2000 psiAS OCCURS (NOT CONSIDERED FOR MOMENT OR SHEAR CAPACITY)Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mor = S*fr = 23.9 k-ft Flexure Reduction Factor, $\phi = 0.65$ Design Moment, $\phi Mor = 15.5$ k-ft	JB
Foundation Width, b = 8 in Foundation Depth, d = 80 in Int Buried Footing Depth, dr = 8 in Ext Exposed Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, Ig = 341333 in ⁴ Assumed Conc, fc = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mor = S*fr = 23.9 k-ft Flexure Reduction Factor, $\phi = 0.65$ Design Moment, $\phi Mor = 15.5$ k-ft	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Ext Exposed Footing Depth, dexp = 62 in AS OCCURS (NOT Cross Sectional Area, A = 640 in² CONSIDERED FOR Section Modulus, Sx = 853 in³ SHEAR CAPACITY Gross Moment of Inertia, Ig = 341333 in⁴ SHEAR CAPACITY Assumed Conc, fc = 2000 psi Stear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi \$19.2.3.1 Cracking Moment, Mor = S*fr = 23.9 k-ft Flexure Reduction Factor, φ = 0.65 \$21.2.2 Design Moment, φMor = 15.5 k-ft	
Ext Exposed Footing Depth, dexp = 62 in Cross Sectional Area, A = 640 in ² Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, I _g = 341333 in ⁴ Assumed Conc, f [*] c = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi Cracking Moment, Mor = $8*fr = 23.9$ k-ft Flexure Reduction Factor, $\phi = 0.65$ Design Moment, $\phi Mor = 15.5$ k-ft	
Cross Sectional Area, $A = 640$ in²Section Modulus, $S_x = 853$ in³Gross Moment of Inertia, $I_g = 341333$ in³Assumed Conc, $f_c = 2000$ psiFooting/Foundation Wall Moment & Shear Capacity Per ACI318-14Conc Modulus of Rupture, $f_r = 335$ psiCracking Moment, $M_{cr} = S^*f_r = 23.9$ k-ftFlexure Reduction Factor, $\phi = 0.65$ Design Moment, $\phi M_{cr} = 15.5$ k-ft	+
Section Modulus, Sx = 853 in ³ Gross Moment of Inertia, I _g = 341333 in ⁴ Assumed Conc, f _c = 2000 psi Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, f _r = 335 psi Cracking Moment, Mor = S*fr = 23.9 k-ft Flexure Reduction Factor, ϕ = 0.65 Design Moment, ϕ Mor = 15.5 k-ft	
$ \begin{array}{c} \text{Gross Moment of Inertia, I_g} = & 341333 \text{ in}^4 \\ \text{Assumed Conc, } f_c = & 2000 \text{ psi} \\ \hline \\ $	
Footing/Foundation Wall Moment & Shear Capacity Per ACI318-14 Conc Modulus of Rupture, fr = 335 psi §19.2.3.1 Cracking Moment, Mcr = S*fr = 23.9 k-ft Flexure Reduction Factor, φ = 0.65 S21.2.2 Design Moment, φMcr = 15.5 k-ft	
Conc Modulus of Rupture, fr = 335 psi §19.2.3.1 Cracking Moment, Mcr = S*fr = 23.9 k-ft Flexure Reduction Factor, φ = 0.65 Segin Moment, φMcr = 15.5 k-ft §21.2.2	
Cracking Moment, $M_{cr} = S^*fr = 23.9 \text{ k-ft}$ Flexure Reduction Factor, $\phi = 0.65$ Seign Moment, $\phi M_{cr} = 15.5 \text{ k-ft}$	σ
Flexure Reduction Factor, $\phi = 0.65$ §21.2.2Design Moment, $\phi M_{cr} = 15.5 \text{ k-ft}$	
Flexure Reduction Factor, $\phi = 0.65$ §21.2.2Design Moment, $\phi M_{cr} = 15.5 \text{ k-ft}$	
Shear Strength, Vc = 57243 lbs §22.5.5.1	
	t
Shear Reduction Factor, $\phi = 0.75$ §21.2.1	


Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.

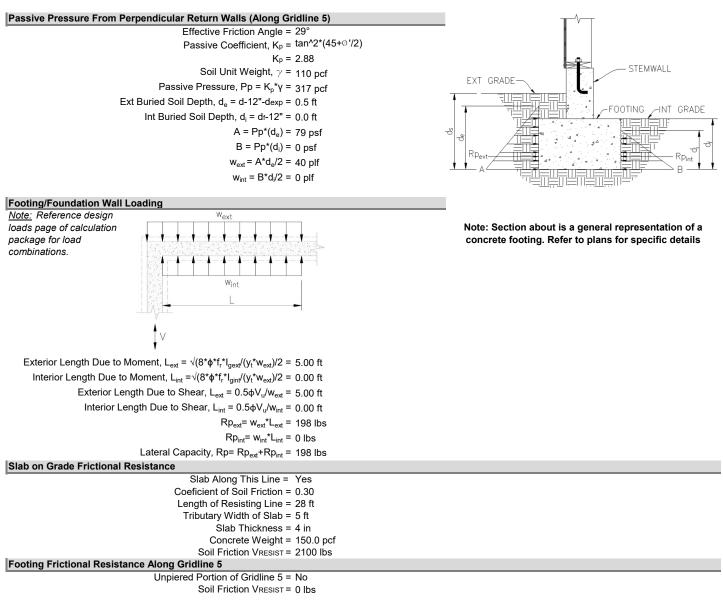
Design Shear, 0.5 ¢Vc = 21466 lbs

	_	3, LLC			PROJECT NO.	SHEET NO.
STRUCTURAL GEOTECHN	IICAL SPECIA	L INSPECTIONS			MFR23-021	
PROJECT						DATE
Johnson Residence Residence Und	derpinning					11/2/2023
	- 4					BY
_ateral Design Loads Along Gridline	ei					JB
_ateral Earth Pressure Along Grid	dline 1					
Soil Load to Foundation, Vsf =	(40 pcf)	(6.00 ft)	(4.00 ft)	= 1920 lb		
Soil Load to Floor Above, Vsa =	(40 pcf)	(6.00 ft)	(7.33 ft)	= 880 lb		
Vind Base Shear Along Gridline	1					
	Longitudinal					
End Zone (5E+6E) =	16.0 psf		Zone (5+	6) = 16.0 psf		
Tributary Width =	3.90 ft		Tributary Wid			
Tributary Height =	18.00 ft		Tributary Heig			
				a = 3.90 ft		
Design base s						
ASD(60%) base s						
VWINE	o + Vsf + Vsa =	= 3474 lbs	Seismic Contr	ois		
	REFERENCE CORNER			D DIRECTION		
		120 Ba	1 A A			
		HZS WIND DIRECTION	یک ≉ میں Load Case B (Long			
eismic Base Shear Along Gridli	Load Case :	A (Transverse)	یک ≉ میں Load Case B (Long			
Roof _{DL} = (15 psf)	Load Case (ne 1 (9.33 ft)	A (Transverse)	Load Case B (Long ad Cases = 140 plf	tudinal) Base shear		
Roofp∟ = (15 psf) st Floorp∟ = (15 psf)	Load Case ne 1 (9.33 ft) (7.33 ft)	A (Transverse)	Load Case B (Long ad Cases = 140 plf = 110 plf	tudinal)		
RoofpL = (15 psf) st FloorpL = (15 psf) 2nd FloorpL = (15 psf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft)	A (Transverse)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 110 plf	tudinal) Base shear		
RoofpL = (15 psf) st FloorpL = (15 psf) 2nd FloorpL = (15 psf) VallpL = (12 psf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft)	A (Transverse) <u>Basic Lo</u>	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 110 plf = 162 plf	tudinal) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) 2nd FloorbL = (15 psf) VallbL = (12 psf) StemwallbL = (150 pcf)	Load Case (ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in)	A (Transverse) <u>Basic Lor</u> (72.00 in)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf	tudinal) Base shear		
RoofbL = (15 psf) 1st FloorbL = (15 psf) 2nd FloorbL = (15 psf) NallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in) (16.00 in)	A (Transverse) <u>Basic Lov</u> (72.00 in) (8.00 in)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf = 133 plf	tudinal) Base shear		
RoofbL = (15 psf) st FloorbL = (15 psf) ind FloorbL = (15 psf) VallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf) PerpWallsbL = (12 psf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft)	(72.00 in) (14.67 ft)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf = 133 plf = 2377 lb	tudinal) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) Ind FloorbL = (15 psf) VallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf) PerpWallsbL = (12 psf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in) (16.00 in)	A (Transverse) <u>Basic Lov</u> (72.00 in) (8.00 in)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf = 133 plf = 2377 lb	tudinal) Base shear		
RoofDL =(15 psf)Ist FloorDL =(15 psf)Ist FloorDL =(15 psf)Pand FloorDL =(12 psf)StemwallDL =(150 pcf)FootingDL =(150 pcf)PerpWallSDL =(12 psf)SoilSeismicEL =	Load Case (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft)	(72.00 in) (14.67 ft)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf = 133 plf = 2377 lb	tudinal) Base shear		
1st FloorDL = (15 psf) 2nd FloorDL = (15 psf) NallDL = (12 psf) StemwallDL = (150 pcf) FootingDL = (150 pcf)	Load Case ne 1 (9.33 ft) (7.33 ft) (7.33 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft)	(72.00 in) (14.67 ft)	Load Case B (Long ad Cases = 140 plf = 110 plf = 110 plf = 162 plf = 600 plf = 133 plf = 2377 lb	tudinal) Base shear		

Total Available Lateral Resistance Along Gridline 1 = 6791 lbs Additional Lateral Resistance of 707 lbs Required

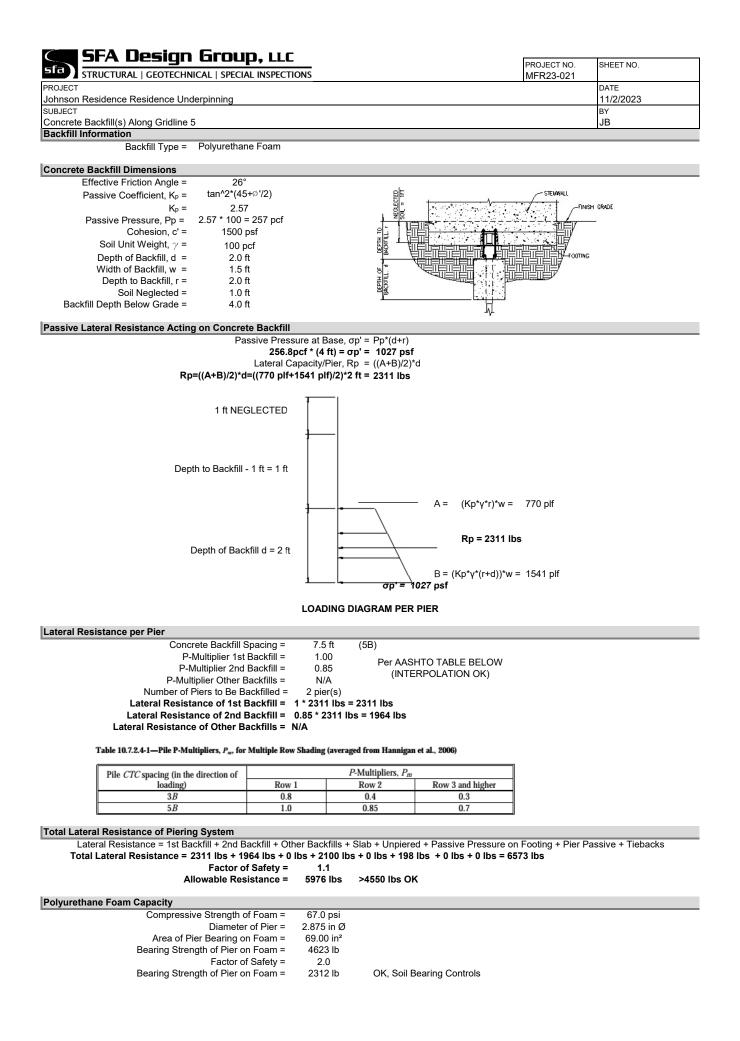


SFA Design Group, LLC


FROJECT NO.	SHELTNO.
MFR23-021	
	DATE
	11/2/2023
	BY
	JB
, b ,	

DRO JECT NO

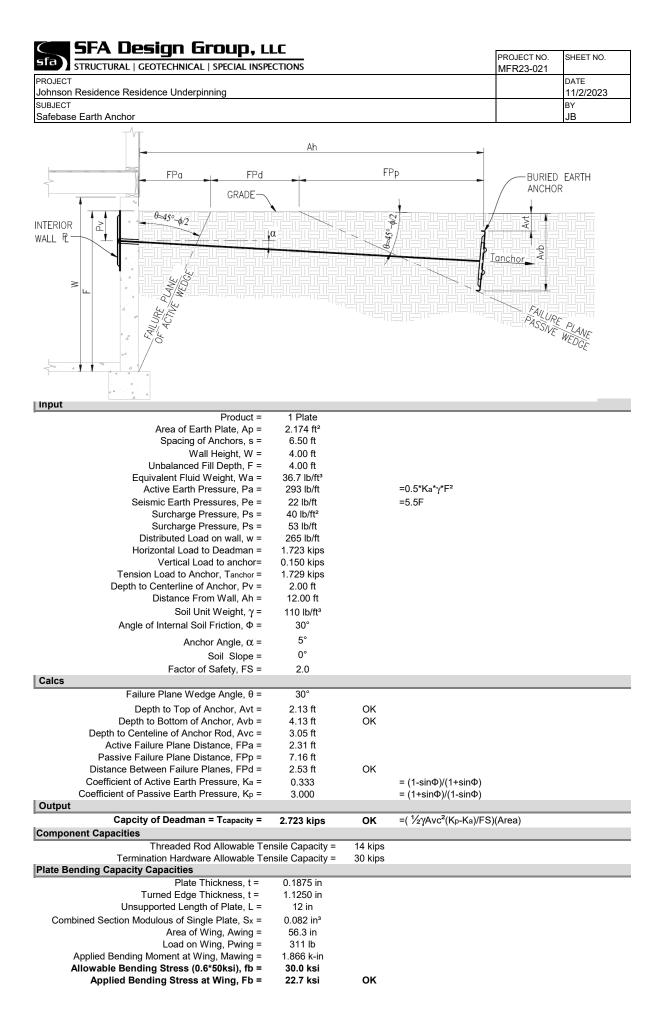
SHEET NO



Note: Footing and foundation wall capacities are based on a worst case scenario of having no steel reinforcement.

), LLC			PROJECT NO.	SHEET NO.
	ICAL SPECIAL	INSPECTIONS			MFR23-021	
PROJECT						DATE
Johnson Residence Residence Unc	ierpinning					<u>11/2/2023</u> ВҮ
Lateral Design Loads Along Gridline	5					JB
Lateral Design Loads Along Ghuine	50					50
Lateral Earth Pressure Along Grid						
Soil Load to Foundation, Vsf =	(40 pcf)	(6.00 ft)	(4.00 ft)	= 1920 lb		
Soil Load to Floor Above, Vsa =	(40 pcf)	(6.00 ft)	(4.17 ft)	= 500 lb		
Wind Base Shear Along Gridline	5					
Loading Direction:	Transverse					
End Zone (1E+4E) =	16.0 psf		Zone (1+4) =			
Tributary Width =	7.80 ft		Tributary Width =			
Tributary Height =	18.00 ft		Tributary Height =	= 18.00 ft		
End Zone (2E+3E)	16.0 psf		Zone (2+3)			
Tributary Width =	7.80 ft		Tributary Width =			
Tributary Height =	6.00 ft		Tributary Height =	6.00 ft		
			a=			
Design base s						
ASD(60%) base s						
VWINE) + V _{sf} + V _{sa} =	4217 lbs	Seismic Controls			
		× /				
	NEFERENCE CORNER	La Participation decision	ETERDACE CORPORATION AND DEED	-s		
		(Transverse)	یرون www.come Load Case B (Longitud			
Soismic Baso Shoar Along Gridli	Load Case A	120 WIND DIRECTION	یرون www.come Load Case B (Longitud			
	Load Case A	(Transverse)	www.come Load Case B (Longitudi ad Cases		= 0.176 W	
Roof _{DL} = (15 psf)	Load Case A ne 5 (6.17 ft)	(Transverse)	Load Case B (Longitudi ad Cases = 93 plf	nol) Base shear		
RoofDL = (15 psf) Ist FloorDL = (15 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft)	(Transverse)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf	inal)		
RoofpL = (15 psf) Ist FloorpL = (15 psf) 2nd FloorpL = (15 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft)	(Transverse)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf	nol) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) 2nd FloorbL = (15 psf) WallbL = (12 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft) (13.50 ft)	125 * who breathon (Transverse) <u>Basia Loo</u>	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 63 plf = 162 plf	nol) Base shear		
RoofpL = (15 psf) 1st FloorpL = (15 psf) 2nd FloorpL = (15 psf) WallpL = (12 psf) StemwallpL = (150 pcf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft) (13.50 ft) (8.00 in)	(Transverse) <u>Basic Loc</u> (72.00 in)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf	nol) Base shear		
RoofbL = (15 psf) 1st FloorbL = (15 psf) 2nd FloorbL = (15 psf) $WallbL =$ (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (13.50 ft) (8.00 in) (16.00 in)	(Transverse) Basic Low (72.00 in) (8.00 in)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf = 133 plf	nol) Base shear		
RoofpL = (15 psf) Ist FloorpL = (15 psf) Ind FloorpL = (15 psf) VallpL = (12 psf) StemwallpL = (150 pcf) FootingpL = (150 pcf) PerpWallspL = (12 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft)	(72.00 in) (8.00 in) (8.33 ft)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf = 133 plf = 1350 lb	nol) Base shear		
RoofbL = (15 psf) Ist FloorbL = (15 psf) 2nd FloorbL = (15 psf) WallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf) PerpWallsbL = (12 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (13.50 ft) (8.00 in) (16.00 in)	(Transverse) Basic Low (72.00 in) (8.00 in)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf = 133 plf	nol) Base shear		
RoofbL = (15 psf) 1st FloorbL = (15 psf) 2nd FloorbL = (15 psf) WallbL = (12 psf) StemwallbL = (150 pcf) FootingbL = (150 pcf) PerpWallsbL = (12 psf)	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft)	(72.00 in) (8.00 in) (8.33 ft)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf = 133 plf = 1350 lb	nol) Base shear		
1st FloorDL = (15 psf) 2nd FloorDL = (15 psf) 2nd FloorDL = (12 psf) WallDL = (150 pcf) StemwallDL = (150 pcf) FootingDL = (12 psf) PerpWallSDL = (12 psf) SoilSeismicEL =	Load Case A ne 5 (6.17 ft) (4.17 ft) (4.17 ft) (13.50 ft) (8.00 in) (16.00 in) (13.50 ft) (6.00 ft)	(72.00 in) (8.00 in) (8.33 ft)	Load Case B (Longitudi ad Cases = 93 plf = 63 plf = 63 plf = 162 plf = 600 plf = 133 plf = 1350 lb	nol) Base shear		

Additional Lateral Resistance of 2461 lbs Required



SFA Design Group, u	1 Г			-
sta structural geotechnical special inspe			PROJECT NO. MFR23-021	SHEET NO.
PROJECT			•	DATE
Johnson Residence Residence Underpinning				11/2/2023
SUBJECT				BY
Foundation Supportworks Helical Tieback System				JB
(E) GRADE		RHA150 LATERAL RESTRAINT SYSTEM ADAPTER BEAM FSI HA150TRAA THREAU ROD ADAPTER BRACKET	50 SQUARE	RE
$-1\sqrt{L}$	FILK			
${ m L}_{ m V}{ m L}$ Design Input				
L Design Input Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ =	1.000 ft 20.000 ft			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, A⊤ =	1.000 ft			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α =	1.000 ft 20.000 ft 15°			
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$	1.000 ft 20.000 ft 15° 110 pcf			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α =	1.000 ft 20.000 ft 15° 110 pcf 29°			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α = Soil Unit Weight, γ = Angle of Internal Soil Friction, Φ =	1.000 ft 20.000 ft 15° 110 pcf			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α = Soil Unit Weight, γ = Angle of Internal Soil Friction, Φ = Tension Load to Anchor, T _R =	1.000 ft 20.000 ft 15° 110 pcf 29°			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α = Soil Unit Weight, γ = Angle of Internal Soil Friction, Φ = Tension Load to Anchor, T _R = HA150 Square Shaft Pier	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in			
Depth to Centerline of Anchor, Pv = Tieback Installation Depth, Aτ = Angle of Tieback Downward from Horizontal, α = Soil Unit Weight, γ = Angle of Internal Soil Friction, Φ = Tension Load to Anchor, T _R = HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A =	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ²			
$\begin{array}{l} \text{Depth to Centerline of Anchor, Pv =} \\ \text{Tieback Installation Depth, At =} \\ \text{Angle of Tieback Downward from Horizontal, } \alpha = \\ \text{Soil Unit Weight, } \gamma = \\ \text{Angle of Internal Soil Friction, } \Phi = \\ \text{Tension Load to Anchor, Tr =} \\ \hline \textbf{HA150 Square Shaft Pier} \\ \hline Ft = \\ \text{Square Shaft Size, Wshaft =} \\ A = \\ ft = \\ \end{array}$	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi			
$\begin{array}{l} \text{Depth to Centerline of Anchor, Pv =} \\ \text{Tieback Installation Depth, At =} \\ \text{Angle of Tieback Downward from Horizontal, } \alpha = \\ \text{Soil Unit Weight, } \gamma = \\ \text{Angle of Internal Soil Friction, } \Phi = \\ \text{Tension Load to Anchor, TR =} \\ \hline \textbf{HA150 Square Shaft Pier} \\ \hline Ft = \\ \text{Square Shaft Size, Wshaft =} \\ A = \\ ft = \\ Ft = \\ \hline \end{array}$	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ²	ОК		
$\begin{array}{l} \text{Depth to Centerline of Anchor, Pv =} \\ \text{Tieback Installation Depth, AT =} \\ \text{Angle of Tieback Downward from Horizontal, α =} \\ \text{Soil Unit Weight, γ =} \\ \text{Angle of Internal Soil Friction, Φ =} \\ \text{Tension Load to Anchor, T_{R} =} \\ \hline \textbf{HA150 Square Shaft Pier} \\ \hline Ft = \\ \text{Square Shaft Size, Wshaft =} \\ A = \\ ft = \\ Ft = \\ \hline \textbf{HA150 Square Shaft Coupler} \\ \end{array}$	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi	ОК		
$\begin{array}{l} \text{Depth to Centerline of Anchor, Pv =} \\ \text{Tieback Installation Depth, AT =} \\ \text{Angle of Tieback Downward from Horizontal, α =} \\ \text{Soil Unit Weight, γ =} \\ \text{Angle of Internal Soil Friction, Φ =} \\ \text{Tension Load to Anchor, T_{R} =} \\ \hline \textbf{HA150 Square Shaft Pier} \\ \hline Ft = \\ \text{Square Shaft Size, Wshaft =} \\ A = \\ ft = \\ Ft = \\ \hline \textbf{HA150 Square Shaft Coupler} \\ \hline \end{array}$	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi	ОК		
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $AT =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = Ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade =	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi 0.750 in SAE Grade 8			
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = Ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade = Double Shear Capacity =	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi	ок		
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade = Double Shear Capacity = HA150TRAA Threaded Rod Adaptor	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi 54.000 ksi			
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade = Double Shear Capacity = HA150TRAA Threaded Rod Adaptor	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi 0.750 in SAE Grade 8 40.200 kips			
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade = Double Shear Capacity = HA150TRAA Threaded Rod Adaptor Ft =	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi 0.750 in SAE Grade 8 40.200 kips 120.000 ksi 1.000 in			
$\begin{array}{l} \text{Depth to Centerline of Anchor, Pv =} \\ \text{Tieback Installation Depth, AT} = \\ \text{Angle of Tieback Downward from Horizontal, } \alpha = \\ \text{Soil Unit Weight, } \gamma = \\ \text{Angle of Internal Soil Friction, } \Phi = \\ \text{Tension Load to Anchor, TR} = \\ \textbf{HA150 Square Shaft Pier} \\ Ft = \\ \text{Square Shaft Size, Wshaft} = \\ \text{A} = \\ ft = \\ \text{Ft} = \\ \hline \textbf{HA150 Square Shaft Coupler} \\ \end{array}$	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in² 2.132 ksi 54.000 ksi 0.750 in SAE Grade 8 40.200 kips 120.000 ksi 1.000 in 0.606 in²			
Depth to Centerline of Anchor, $Pv =$ Tieback Installation Depth, $A\tau =$ Angle of Tieback Downward from Horizontal, $\alpha =$ Soil Unit Weight, $\gamma =$ Angle of Internal Soil Friction, $\Phi =$ Tension Load to Anchor, $TR =$ HA150 Square Shaft Pier Ft = Square Shaft Size, Wshaft = A = ft = HA150 Square Shaft Coupler Bolt diameter = Bolt Grade = Double Shear Capacity = HA150TRAA Threaded Rod Adaptor Ft =	1.000 ft 20.000 ft 15° 110 pcf 29° 4.683 kips 90.000 ksi 1.500 in 2.196 in ² 2.132 ksi 54.000 ksi 0.750 in SAE Grade 8 40.200 kips 120.000 ksi 1.000 in			

LRHA150 Lateral Restraint System Threaded Rod			
Ft =	125.000 ksi		
Threaded Rod Diameter =	0.625 in		
A =	0.307 in ²		
ft =	7.627 ksi		
Ft =	75.000 ksi	ОК	
LRHA150 Lateral Restraint System Saddle Beam	10.000 101		
Design Tube OD =	2.875 in		
Design Wall Thickness =	0.203 in		
5 A =	1.704 in ²		
S =	1.064 in ³		
F _y =	60.000 ksi		
MAPPLIED =	5.000 kip-in		
Mallow =		OK	
VAPPLIED =	5.000 kips		
VALLOW =	61.346 kips	ОК	
LRHA150 Lateral Restraint System Adapter Beam			
Width of Plate, b =	0.380 in		
Depth of Plate, d =	3.500 in		
A =	1.330 in ²		
S =	0.776 in ³		
Fy =	36.000 ksi		
MAPPLIED =	1.756 kip-in		
(2) Plates Mallow =	33.516 kip-in	OK	
VAPPLIED =	2.341 kips		
(2) Plates VALLOW =		OK	
Helix Properties and Capacity			
Fy _h =	50 ksi		
Fb _h = 0.75*Fy _h =	37.500 ksi		
D1 =	10 in	A1 = $\pi^* D1^2 / 4 - \pi^* (W_{shaft})^2 / 4 =$	76.8 in ²
t1 =	0.375 in	S1 = 1*t1 ² /6 =	0.023 in ³
Q1 = A1*w1 =	7.5 kips	w1 =	0.097 ksi
D2 =	12 in	A2 = $\pi^* D2^2 / 4 - \pi^* (W_{\text{shaft}})^2 / 4 =$	111.3 in ²
t2 =	0.375 in	$S_2 = 1*t_2^2/6 =$	0.023 in ³
$Q_2 = A_2^* W_2 =$	7.1 kips	W2 =	0.064 ksi
Qz = Az wz = D3 =	0 in	A3 = $\pi^* D_3^2 / 4 - \pi^* (W_{shaft})^2 / 4 =$	0.0 in ²
$t_3 = 0$	0.375 in	$S_3 = 1*t_3^2/6 =$	0.023 in ³
$Q_3 = A_3 * W_3 = \sum_{i=1}^{n} C_i = C_i + C_i $	0.0 kips	w3 =	3.125 ksi
$\Sigma \mathbf{Q} =$	14.6 kips	ОК	
Helix Weld to Pier Capacity	70.1.1		
E70 Electrodes =	70 ksi		
Size of Fillet Both Sides =	0.250 in		
Capacity of Fillet Both Sides =	7.424 kli		
R1 =	0.414 kli	Weld OK	
R2 =	0.335 kli	Weld OK	
R3 =	-2.344 kli	Weld OK	

Soil - Individual Bearing Method - Cohesive		
Factor of Safety =	2.0	
Blow Count, N =	12	Ref Table A-1
$\sum A_h = A_1 + A_2 + A_3 =$	1.3 ft ²	
Cohesion, c =	1.500 ksf	
$N_c =$	9	
$Q_u = \sum A_h(cN_c) =$	17.635 kips	
Q _{a, compression/tension} = Q _u /FS =	8.817 kips	OK
Soil - Individual Bearing Method - Non-Cohesive		
Factor of Safety, FS =	2.0	
γ =	110 pcf	
Ø =	29°	Ref Table 3-4
Failure Plane Wedge Angle, θ =	31°	
Lead Helix Horizontal Length, Ah =	19.319 ft	
Depth of Helix, D1 =	5.047 ft	
Depth of Helix, D2 =	4.400 ft	
Depth of Helix, D3 =	0.000 ft	
q'1 = γ*D1 =	555.2 psf	
$q'_2 = \gamma^* D_2 =$	484.0 psf	
q'3 = γ*D3 =	0.0 psf	
$N_q = 1+0.56(12^*\phi)^{\phi/54} =$	13.98	(for Ø =29°)
$Q_{1_u} = A_1(q'_1N_q) =$	4.136 kips	
$Q_{2_{u}} = A_{2}(q'_{2}N_{q}) =$	5.229 kips	
$Q_{3_u} = A_3(q'_3N_q) =$	0.000 kips	
$Q_{a, \text{ compression/tension}} = \sum Q_u / FS =$	4.683 kips	OK ◀ Non-Cohesive Controls
Soil - Torque Correlation Method - Verification		
Factor of Safety, FS =	2.0	
Emperical Torque Correleation Factor, Kt =	10 ft ^{−1}	
Final Installation Torque, T =	1500 lb-ft	
Ultimate Pile Capacity, Qu =	15.000 kips	
Allowable Pile Capacity, Qa =	7.500 kips	OK
Results		

Max Load To Tieback = Design Load = 4683 lb 1.5" Solid Square Shaft Tieback Installed at a 15 Degree Angle 0.375" Thick 10/12" Helix With 0.25" Fillet Welds Each Side Of Helix To Pipe Pier Minimum 20'-0" Installation Depth And 1500 ft-lb Installation Torque

LIC# : KW-06015057, Build:20.23.08.01	SFA ENGINEERING LLC		(c) ENERCALC INC 1983-2023
DESCRIPTION: Channel (Uppe	r Half)		
CODE REFERENCES			
Calculations per AISC 360-16, IBC 20	018, CBC 2019, ASCE 7-16		
Load Combination Set : IBC 2021			
Material Properties			
Analysis Method Allowable Strength D		Fy : Steel Yield :	36.0 ksi
Beam Bracing : Completely Unbrac	ed	E: Modulus :	29,000.0 ksi
Bending Axis : Major Axis Bending			
\$\$	♦L(0.08645) H(0.07150)	÷	``
	C4x4.5		
	Span = 2.0 ft		
•			-
A			

Applied Loads

Steel Beam

Service loads entered. Load Factors will be applied for calculations.

Project File: calcs.ec6

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : L = 0.01330, H = 0.0110 ksf, Tributary Width = 6.50 ft

Varying Uniform Load : H= 0.0->0.4745 k/ft, Extent = 0.0 -->> 2.0 ft

/laximum Bending Stress Ratio =	0.167 : 1	Maximum Shear St	tress Ratio =	0.122 :
Section used for this span	C4x4.5	Section used	l for this span	C4x4.5
Ma : Applied	0.632 k-ft	Va : A	oplied	0.7904
Mn / Omega : Allowable	3.790 k-ft	Vn/Om	nega : Allowable	6.467
Load Combination	+L+H	Load Combir Location of m	nation naximum on span	+L+H 2.000
Span # where maximum occurs	Span # 1	Span # where	e maximum occurs	Span # 1
Aximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	0.003 in Ratio = 16,9 0 in Ratio =	73 >=360 Span: 0 <360 n/a	1 : L Only	
Max Downward Total Deflection Max Upward Total Deflection	0.009 in Ratio = 513 0 in Ratio =	58 >=240. Span: 0 <240.0 n/a	1:+L+H	

/ertical Reactions	Support notation : Far left is	# Values in KIPS
Load Combination	Support 1 Support 2	
Max Upward from all Load Conditions	0.790	
Max Upward from Load Combinations	0.790	
Max Upward from Load Cases	0.618	
H Only	0.618	
+L+H	0.790	
+0.750L+H	0.747	
+0.60H	0.371	
L Only	0.173	

LIC# : KW-06015057, E	Build:20.23.08.01	SFA ENGINEERING LLC		(c) ENERCALC INC 1983-2023
DESCRIPTION	: Channel (Lower Half)			
CODE REFERE	ENCES			
Calculations per A Load Combination	NSC 360-16, IBC 2018, CB n Set : IBC 2021	C 2019, ASCE 7-16		
Material Properti	ies			
Beam Bracing :	Allowable Strength Design Completely Unbraced Major Axis Bending		Fy : Steel Yield : E: Modulus :	36.0 ksi 29,000.0 ksi
\$		H(0.9556,0.4745) ∛ L(0.01330) H(0.0110) →	÷	`
		C4x4.5		
.		Span = 2.0 ft		
		Quanta a l		tors will be applied for coloulations

Applied Loads

Steel Beam

Service loads entered. Load Factors will be applied for calculations.

Project File: calcs.ec6

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : L = 0.01330, H = 0.0110 k/ft

Varying Uniform Load : H= 0.9556->0.4745 k/ft, Extent = 0.0 -->> 2.0 ft

SIGN SUMMARY					Design OK
/laximum Bending Stress Ratio =	0.433 : 1	Ma	ximum S	hear Stress Ratio =	0.229:1
Section used for this span	C4x4.5		Sect	on used for this span	C4x4.5
Ma : Applied	1.639 k-ft			Va : Applied	1.479 k
Mn / Omega : Allowable	3.790 k-ft			Vn/Omega : Allowable	6.467 k
Load Combination	+L+H			Combination tion of maximum on span	+L+H 2.000 ft
Span # where maximum occurs	Span # 1		Span	# where maximum occurs	Span # 1
Maximum Deflection					
Max Downward Transient Deflection	0 in Ratio =	0	<360	n/a	
Max Upward Transient Deflection	0 in Ratio =	0	<360	n/a	
Max Downward Total Deflection	0.028 in Ratio =	1723	>=240.	Span: 1 : +L+H	
Max Upward Total Deflection	0 in Ratio =	0	<240.0	n/a	

ertical Reactions	Support notation : Far left is	# Values in KIPS
Load Combination	Support 1 Support 2	
Max Upward from all Load Conditions	1.479	
Max Upward from Load Combinations	1.479	
Max Upward from Load Cases	1.452	
H Only	1.452	
+L+H	1.479	
+0.750L+H	1.472	
+0.60H	0.871	
L Only	0.027	

Vood Beam				-	ect File: calcs.ec6
IC# : KW-06015057, Build:20.23.08.01	SFA ENGIN	IEERING LLC		(c) ENER	CALC INC 1983-202
DESCRIPTION: Wood Beam					
ODE REFERENCES					
Calculations per NDS 2018, IBC 2018, C .oad Combination Set : IBC 2021	BC 2019, ASCE 7-16				
aterial Properties					
Analysis Method : Allowable Stress Design		Fb +	875 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2021		Fb -	875 psi	Ebend- xx	1300ksi
		Fc - Prll	600 psi	Eminbend - xx	470 ksi
Nood Species : Douglas Fir-Larch		Fc - Perp	625 psi		
Nood Grade No.2		Fv	170 psi		
Beam Bracing : Beam is Fully Braced aga	ainst lateral-torsional buckling	Ft	425 psi	Density	31.21pcf
		9			
D(0.216) L	.(0.36)				
	D(0.0480	0) L(0.080)			
Ý †		<u></u>	4	7	Ť
\mathbf{Q}	4	x10			$\mathbf{\hat{\mathbf{v}}}$
	، ۲	X10			
	Span	- 14 0 ft			
	Span	= 14.0 ft			
4					
					1
oplied Loads		Service	loads entered. Load Fa	ctors will be applied	for calculations.
•	ed and added	Service	loads entered. Load Fa	ctors will be applied	for calculations.
o plied Loads Beam self weight NOT internally calculat Loads on all spans	ed and added	Service	loads entered. Load Fa	ctors will be applied	for calculations.
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0)240, L = 0.040 ksf, Tribi			ctors will be applied	for calculations.
Beam self weight NOT internally calculat oads on all spans)240, L = 0.040 ksf, Tribi			ctors will be applied	for calculations.
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0)240, L = 0.040 ksf, Tribi				for calculations.
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio =	0240, L = 0.040 ksf, Tribu @ 3.917 ft	utary Width			
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY	0240, L = 0.040 ksf, Tribu @ 3.917 ft	utary Width Maximum S	= 2.0 ft		Design OK
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual =	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 N 4x10 1,049.58 psi	utary Width Maximum S	= 2.0 ft thear Stress Ratio used for this span fv: Actual		Design OK 0.341 : 1
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 N 4x10	utary Width Maximum S	= 2.0 ft hear Stress Ratio used for this span	=	Design OK 0.341 : 1 4x10
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L	utary Width Maximum S Sectior Load C	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination	=	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span =	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft	utary Width Maximum S Sectior Load C Locatio	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L	utary Width Maximum S Sectior Load C Locatio	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L
Beam self weight NOT internally calculat loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723ft Span # 1	utary Width Maximum S Sectior Load C Locatio Span #	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio =	utary Width Maximum S Sectior Load C Locatio Span # 469 >=360	= 2.0 ft thear Stress Ratio used for this span fv: Actual Fv ombination n of maximum on span where maximum occur Span: 1 : L Only	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : $D = 0.0$ Point Load : $D = 0.2160$, $L = 0.360$ k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio =	utary Width Maximum S Sectior Load C Locatio Span # 469 >=360 0 <360	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft
Beam self weight NOT internally calculat oads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio =	utary Width Maximum S Sectior Load C Locatio Span # 469 >=360	= 2.0 ft thear Stress Ratio used for this span fv: Actual Fv ombination n of maximum on span where maximum occur Span: 1 : L Only	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio =	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L	= = =	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ra	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Joads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Max Combination	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ra	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ra	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 1.572 in Ratio = 1.572 in Ratio = 0 in Ratio = 1.572 in Ratio = 0 in	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection	0240, L = 0.040 ksf, Tribu @ 3.917 ft 1.000: 1 N 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1.311 1.057 1.311 1.057	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Loads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Combinations Max Upward from Load Cases	0240, L = 0.040 ksf, Tribu (@ 3.917 ft 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1.311 1.057 1.311 1.057 0.819 0.661	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Joads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Downward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L +D+0.750L	0240, L = 0.040 ksf, Tribu (@ 3.917 ft) 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 0 in Ratio = 1.311 1.057 1.311 1.057 0.819 0.661 0.492 0.396 1.311 1.057 1.106 0.892	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1
Beam self weight NOT internally calculat Joads on all spans Uniform Load on ALL spans : D = 0.0 Point Load : D = 0.2160, L = 0.360 k ESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb: Actual = F'b = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward from all Load Conditions Max Upward from Load Combinations Max Upward from Load Cases D Only +D+L	0240, L = 0.040 ksf, Tribu (@ 3.917 ft) 1.000: 1 M 4x10 1,049.58 psi 1,050.00 psi +D+L 5.723 ft Span # 1 0.358 in Ratio = 0 in Ratio = 0.572 in Ratio = 0 in Ratio = 0 in Ratio = Support 1 Support 2 1.311 1.057 1.311 1.057 0.819 0.661 0.492 0.396 1.311 1.057	utary Width Maximum S Section Load C Locatio Span # 469 >=360 0 <360 293 >=240 0 <240	= 2.0 ft thear Stress Ratio used for this span fv: Actual F'v ombination n of maximum on span where maximum occur Span: 1 : L Only n/a Span: 1 : +D+L n/a	= = = s = s	Design OK 0.341 : 1 4x10 56.19 psi 164.90 psi +D+L 0.000 ft Span # 1

Wood Column

LIC# : KW-06015057, Build:20.23.08.01

DESCRIPTION: Wood Post

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2021

General Information

Analysis Method	Allowable S	tress Design		Wood Section Name	4x4		
End Fixities	Top & Botto	m Pinned		Wood Grading/Manuf	Lumber		
Overall Column Height		8 ft	Wood Member Type	e Sawn			
(Used for non-slender calculations)			Exact Width	3.50 in Allow Stress Modification Factors			
Wood Species	5			Exact Depth	3.50 in		1.50
Wood Grade	No.2	_		Area 1	12.250 in^2	2 Cf or Cv for Compression	1.150
Fb +	875 psi Fv 170 psi	lx	12.505 in^4	Cf or Cv for Tension	1.50		
Fb -	875 psi	Ft	425 psi	ly	12.505 in^4	· · · · · · · · ·	1.0
Fc - Prll	600 psi	Density	31.21 pcf	,		Ct : Temperature Fact	1.0
Fc - Perp	625 psi					Cfu : Flat Use Factor	1.0
E : Modulus of Elasticity x-x Bending y-y		y-y Bending	Axial		Kf : Built-up columns	1.0	
	Basic	1300	1300	1300 ksi		Use Cr : Repetitive ?	No
	Minimum	470	470	Column Buckling Condition:		•	
				ABOUT X-X Axis	s: Lux = 8 ft,	Kx = 1.0	

ABOUT Y-Y Axis: Luy = 8 ft, Ky = 1.0

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Note: Only non-zero reactions are listed.

Column self weight included : 21.240 lbs * Dead Load Factor AXIAL LOADS . . .

Axial Load at 8.0 ft, Xecc = 1.0 in, Yecc = 1.0 in, D = 0.4920, L = 0.8190 k

DESIGN SUMMARY

Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination	0.3883:1 +D+L	Maximum SERVI Top along Y-Y	CE Lateral Load I 0.01366 k	Reactions Bottom along Y-Y	0.01366 k			
Governing NDS Forumla Comp + Mxx + Myy Location of max.above base	Top along X-X Maximum SERVI	0.01366 k	Bottom along X-X					
At maximum location values are . Applied Axial	1.332 k -0.1085 k-ft -0.1085 k-ft 401.641 psi	Along Y-Y	-0.04809 in at pination : +D+L		ft above base			
Applied Mx Applied My Fc : Allowable		Along X-X for load coml	-0.04809 in at bination : +D+L	4.671 ft abov	e base			
		Other Factors us						
PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear	0.009836 : 1 +D+L 8.0 ft 2.508 psi 170.0 psi			Bending Compres	<u>sion Tension</u>			

Maximum Reactions

	X-X Axis R	X-X Axis Reaction		Reaction	Axial Reaction	My - End Moments k-ft		Mx - End Moments	
Load Combination	@ Base	@ Top	@ Base	@ Top	@ Base	@ Base	@ Top	@ Base	@ Top
D Only	-0.005	0.005	-0.005	0.005	0.513				
+D+L	-0.014	0.014	-0.014	0.014	1.332				
+D+0.750L	-0.012	0.012	-0.012	0.012	1.127				
+0.60D	-0.003	0.003	-0.003	0.003	0.308				
L Only	-0.009	0.009	-0.009	0.009	0.819				

Project File: calcs.ec6

(c) ENERCALC INC 1983-2023

SFA ENGINEERING LLC